Чева Джованни (Ceva Giovanni) (3.3. 1648, Милан,- 13.12.1734, Мантуя) - итальянский инженер и математик. Окончил Пизанский университет. Основные работы по геометрии и механике. Доказал (1678) теорему о соотношении отрезков некоторых прямых, пересекающих треугольник (теорема Чевы). Построил учение о секущих, которое положило начало синтетической геометрии; оно изложено в сочинение "О взаимно пересекающихся прямых"
Теорема Менелая
Эта теорема (вместе с обратной) показывает закономерность, наблюдающуюся для отношений отрезков, соединяющих вершины некоторого треугольника и точки пересечения секущей со сторонами (продолжениями сторон) треугольника.
На чертежах приведены два возможных случая расположения треугольника и секущей. В первом случае секущая пересекает две стороны треугольника и продолжение третьей, во втором – продолжения всех трех сторон треугольника
Теорема 2. (обратная теореме Менелая) Пусть в треугольнике АВС точки А1, В1, С1 принадлежит прямым ВС, АС, АВ соответственно, тогда, если
то точки А1, В1, С1 лежат на одной прямой.
Решение. Запишем соотношение, полученное в теореме Менелая для треугольника ABMb и прямой McM(C):
Первая дробь в этом произведении очевидно равна 1, а третья -
Поэтому второе отношение равно 2:1.что и требовалось доказать,
Доказательство: известно несколько оригинальных доказательств теоремы Чевы, мы рассмотрим доказательство, основанное на двукратном применении теоремы Менелая. Запишем соотношение теоремы Менелая первый раз для треугольника ABB1 и секущей CC1 (точку пересечения чевиан обозначим Z):
а второй раз для треугольника B1BC и секущей AA1:
Перемножив два этих отношения, проведя необходимые сокращения получим соотношение, содержащееся в утверждении теоремы.
то прямые AA1, BB1 и CC1 пересекаются в одной точке.
Доказательство этой теоремы проводится методом от противного, также, как доказательство теоремы Менелая.
Пример 3. Докажите, что медианы треугольника пересекаются в одной точке.
Решение. Рассмотрим соотношение
для вершин треугольника и середин его сторон. Очевидно, что в каждой дроби в числителе и знаменателе стоят равные отрезки, поэтому все эти дроби равны единице. Следовательно, выполнено соотношение Чевы, поэтому, по обратной теореме, медианы пересекаются в одной точке.
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть