Презентация, доклад на тему Теоремы Менелая И Чевы

Менела́й Александри́йский (Μενέλαος ὁ Αλεξανδρεύς, ок. 100 н. э.) — древнегреческий математик и астроном. Время его жизни и деятельности определяется приведёнными в «Алмагесте» Птолемея двумя астрономическими наблюдениями, которые Менелай произвёл в Риме в первом году царствования Траяна, то

Слайд 1ТЕОРЕМЫ ЧЕВЫ И МЕНЕЛАЯ

ТЕОРЕМЫ ЧЕВЫ И МЕНЕЛАЯ

Слайд 2Менела́й Александри́йский (Μενέλαος ὁ Αλεξανδρεύς, ок. 100 н. э.) — древнегреческий математик и

астроном. Время его жизни и деятельности определяется приведёнными в «Алмагесте» Птолемея двумя астрономическими наблюдениями, которые Менелай произвёл в Риме в первом году царствования Траяна, то есть в 98 году н. э.Главное сочинение Меналая — «Сферика» в трёх книгах. Его греческий оригинал утрачен, и содержание его известно по арабским, а также последующим вторичным латинским и еврейским переводам. Другие работы: Менелаем были написаны не дошедшие до нас сочинения «О вычислении хорд» в 6 книгах, «Начала геометрии» в 3 книгах, «Книга о треугольнике», «Книга о заходах знаков зодиака». Менелай изучал кривые высших порядков. Менелаю принадлежала «Книга о подразделении составных тел», посвящённая определению удельных весов тел.

Чева Джованни (Ceva Giovanni) (3.3. 1648, Милан,- 13.12.1734, Мантуя) - итальянский инженер и математик. Окончил Пизанский университет. Основные работы по геометрии и механике. Доказал (1678) теорему о соотношении отрезков некоторых прямых, пересекающих треугольник (теорема Чевы). Построил учение о секущих, которое положило начало синтетической геометрии; оно изложено в сочинение "О взаимно пересекающихся прямых"

Менела́й Александри́йский (Μενέλαος ὁ Αλεξανδρεύς, ок. 100 н. э.) — древнегреческий математик и астроном. Время его жизни и деятельности

Слайд 3Особое место в планиметрии отведено двум замечательным теоремам: теореме Чевы и

теореме Менелая. Эти теоремы не включены в базовую программу курса геометрии средней школы, но их изучение (и применение) рекомендуется всем, кто интересуется математикой чуть больше, чем это возможно в рамках школьной программы. Чем же интересны эти теоремы? Сначала отметим, что при решении геометрических задач продуктивно сочетаются два подхода:
- один основан на определении базовой конструкции (например: треугольник – окружность; треугольник – секущая прямая; треугольник – три прямых, проходящих через его вершины и пересекающиеся в одной точке; четырехугольник с двумя параллельными сторонами и т.п.),
- а второй – метод опорных задач (простых геометрических задач, к которым сводится процесс решения сложной задачи).

Теорема Менелая
Эта теорема (вместе с обратной) показывает закономерность, наблюдающуюся для отношений отрезков, соединяющих вершины некоторого треугольника и точки пересечения секущей со сторонами (продолжениями сторон) треугольника.
На чертежах приведены два возможных случая расположения треугольника и секущей. В первом случае секущая пересекает две стороны треугольника и продолжение третьей, во втором – продолжения всех трех сторон треугольника

Особое место в планиметрии отведено двум замечательным теоремам: теореме Чевы и теореме Менелая. Эти теоремы не включены

Слайд 4Теорема 1. (Менелая) Пусть
пересечен прямой, не параллельной стороне АВ

и пересекающей две его стороны АС и ВС
соответственно в точках В1 и А1, а прямую АВ в точке С1 тогда







Теорема 2. (обратная теореме Менелая) Пусть в треугольнике АВС точки А1, В1, С1 принадлежит прямым ВС, АС, АВ соответственно, тогда, если

то точки А1, В1, С1 лежат на одной прямой.

Теорема 1. (Менелая) Пусть пересечен прямой, не параллельной стороне АВ и пересекающей две его стороны АС и

Слайд 5Доказательство первой теоремы можно провести так: на секущую прямую опускают перпендикуляры

из всех вершин треугольника. В результате получают три пары подобных прямоугольных треугольников. Фигурирующие в формулировке теоремы отношения отрезков заменяют на отношения перпендикуляров, соответствующих им по подобию. Оказывается, что каждый отрезок – перпендикуляр в дробях будет присутствовать дважды: один раз в одной дроби в числителе, второй раз, в другой дроби, в знаменателе. Таким образом, произведение всех этих отношений окажется равным единице.
Обратная теорема доказывается методом «от противного». Предполагается, что при выполнении условий теоремы 2 точки А1, В1, С1 не лежат на одной прямой. Тогда прямая А1В1 пересечет сторону АВ в точке С2, отличной от точки С1. При этом, в силу теоремы 1, для точек А1, В1, С2 будет выполняться то же отношение, что и для точек А1, В1, С1. Из этого следует, что точки С1 и С2 поделят отрезок AB в одинаковых отношениях. Тогда эти точки совпадут – получили противоречие.
Доказательство первой теоремы можно провести так: на секущую прямую опускают перпендикуляры из всех вершин треугольника. В результате

Слайд 6Пример 1. Доказать, что медианы треугольника в точке пересечения делятся в

отношении 2:1 считая от вершины

Решение. Запишем соотношение, полученное в теореме Менелая для треугольника ABMb и прямой McM(C):

Первая дробь в этом произведении очевидно равна 1, а третья -

Поэтому второе отношение равно 2:1.что и требовалось доказать,

Пример 1. Доказать, что медианы треугольника в точке пересечения делятся в отношении 2:1 считая от вершиныРешение. Запишем

Слайд 7Теорема Чевы
Большинство замечательных точек треугольника могут быть по­лучены при помощи следующей

процедуры. Пусть имеется некоторое правило, согласно которому мы сможем выбрать определенную точку A1, на стороне BC (или её про­должении) треугольника ABC (например, выберем середину этой стороны). Затем построим аналогичные точки B1, C1 на двух других сторонах треугольника (в нашем примере еще две середи­ны сторон). Если правило выбора удачное, то прямые AA1, BB1, CC1 пересекутся в некоторой точке Z (выбор середин сторон в этом смысле, конечно, удачный, так как медианы треугольника пересекаются в одной точке).
Хотелось бы иметь какой-нибудь общий метод, позволяющий по положению точек на сторонах треугольника определять, пересекается ли соответствующая тройка прямых в одной точке или нет.
Универсальное условие, «закрывшее» эту проблему, нашёл в 1678 г. итальянский инженер Джованни Чева.
Определение. Отрезки, соеди­няющие вершины треугольника с точками на противолежащих сторонах (или их продолжениях), называют чевианами, если они пересекаются в одной точке.
Теорема ЧевыБольшинство замечательных точек треугольника могут быть по­лучены при помощи следующей процедуры. Пусть имеется некоторое правило, согласно

Слайд 8Теорема 3. (Прямая теорема Чевы) В произвольном треугольнике АВС на сторонах

ВС, СА, АВ или их продолжениях взяты соответственно точки А1, В1, С1, такие, что прямые АА1, ВВ1, СС1 пересекаются в некоторой общей точке, тогда

Доказательство: известно несколько оригинальных доказательств теоремы Чевы, мы рассмотрим доказательство, основанное на двукратном применении теоремы Менелая. Запишем соотношение теоремы Менелая первый раз для треугольника ABB1 и секущей CC1 (точку пересечения чевиан обозначим Z):

а второй раз для треугольника B1BC и секущей AA1:

Перемножив два этих отношения, проведя необходимые сокращения получим соотношение, содержащееся в утверждении теоремы.

Теорема 3. (Прямая теорема Чевы) В произвольном треугольнике АВС на сторонах ВС, СА, АВ или их продолжениях

Слайд 9Теорема 4. (Обратная теорема Чевы). Если для выбранных на сторонах треугольника

ABC или их продолжениях точек A1, В1 и C1 выполняется условие Чевы:

то прямые AA1, BB1 и CC1 пересекаются в одной точке.
Доказательство этой теоремы проводится методом от противного, также, как доказательство теоремы Менелая.

Пример 3. Докажите, что медианы треугольника пересекаются в одной точке.
Решение. Рассмотрим соотношение

для вершин треугольника и середин его сторон. Очевидно, что в каждой дроби в числителе и знаменателе стоят равные отрезки, поэтому все эти дроби равны единице. Следовательно, выполнено соотношение Чевы, поэтому, по обратной теореме, медианы пересекаются в одной точке.

Теорема 4. (Обратная теорема Чевы). Если для выбранных на сторонах треугольника ABC или их продолжениях точек A1,

Слайд 10Используемые ресурсы:
Математика – 10 класс
Мендель Виктор Васильевич,
декан факультета естественных

наук,
математики и информационных технологий ДВГГУ
Используемые ресурсы:Математика – 10 класс Мендель Виктор Васильевич, декан факультета естественных наук, математики и информационных технологий ДВГГУ

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть