Дано: а ∩ b = М; а Є α; b Є α
а1∩ b1 = М1; а1Є β; b1Є β
a || a1; b || b1
Доказать: α || β
α
β
а
b
М
b1
а1
М1
Доказательство: (от противного)
Пусть α ∩ β = с
Тогда а || β, т.к. a || a1, а1 Є β
а Є α; α ∩ β = с, значит а || с.
b || β, т.к. b || b1, b1 Є β
b Є α α ∩ β = с, значит b || с.
Имеем а || b, то есть
через точку М проходят
две прямые а и b,
параллельные прямой с.
Получили противоречие. Значит, α || β .
α
β
а
b
М
b1
а1
М1
с
По признаку параллельности прямой и плоскости а || β и b || β.
1) Допустим, что ___________
2) Так как __________________,
то ______________________.
Получаем, что
______________________________________________________.
Вывод:
α ∩ β = с
п || β, т || β
т || с и п || с
через точку К проходят две прямые параллельные прямой с.
α || β
А1
В1
А2
В2
С2
С1
О
В2
С1
А1
В1
А2
С2
О
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть