Презентация, доклад по математике Функция. Исторический очерк.

Содержание

Математическое моделирование явлений и законов природы приводит к возникновению понятия функции, которое поначалу ограничивается алгебраическими функциями (многочленами) и тригонометрией.

Слайд 1Функции Исторический Очерк

Функции    Исторический Очерк

Слайд 2
Математическое моделирование явлений и законов природы приводит к возникновению понятия функции,

которое поначалу ограничивается алгебраическими функциями (многочленами) и тригонометрией.
Математическое моделирование явлений и законов природы приводит к возникновению понятия функции, которое поначалу ограничивается алгебраическими функциями (многочленами)

Слайд 3Непер Декарт
Как и остальные понятия математики, общее понятие функции сложилось

не сразу, а прошло долгий путь развития. Ещё в XVII веке Непер, вводя в обиход логарифмическую функцию, использовал обходной путь — определил её кинематически. Декарт рассматривал неалгебраические зависимости только в виде редчайшего исключения. Однако в работе Ферма «Введение и изучение плоских и телесных мест» (1636, опубликована в 1679 году) говорится: «Всякий раз, когда в заключительном уравнении имеются две неизвестные величины, налицо имеется место». По существу здесь идёт речь о функциональной зависимости и её графическом изображении («место» у Ферма означает линию).

Ферма

Непер    Декарт  Как и остальные понятия математики, общее понятие функции сложилось не сразу,

Слайд 4Барроу Ньютон
У Барроу («Лекции по геометрии», 1670) в геометрической форме устанавливается взаимная

обратность действий дифференцирования и интегрирования (разумеется, без употребления самих этих терминов). Это свидетельствует уже о совершенно отчётливом владении понятием функции. В геометрическом и механическом виде это понятие мы находим и у Ньютона.
Барроу    НьютонУ Барроу («Лекции по геометрии», 1670) в геометрической форме устанавливается взаимная обратность действий

Слайд 5Лейбниц
Математический термин «функция» впервые появился в 1692 году у Лейбница, и

притом не совсем в современном его понимании: Лейбниц вначале называл функцией различные отрезки, связанные с какой-либо кривой (например, абсциссы её точек). Позже, однако, в переписке с Иоганном Бернулли (1694) содержание термина расширяется и в конце концов становится синонимом «аналитически заданной зависимости».

ЛейбницМатематический термин «функция» впервые появился в 1692 году у Лейбница, и притом не совсем в современном его

Слайд 6Эйлер
В начале XVIII века были получены разложения всех стандартных функций и

многих других. Благодаря, в основном, Эйлеру (1748) были уточнены их определения. Эйлер впервые ясно определил показательную функцию, а также логарифмическую как обратную к ней, и дал их разложения в ряд. До Эйлера многие математики считали, например, тангенс тупого угла положительным; Эйлер дал современные определения всех тригонометрических функций (сам термин «тригонометрическая функция» предложил Клюгель в 1770 году).
ЭйлерВ начале XVIII века были получены разложения всех стандартных функций и многих других. Благодаря, в основном, Эйлеру

Слайд 7Леонард Эйлер
В приложениях анализа появляется множество новых трансцендентных функций. Когда Гольдбах

и Бернулли попытались найти непрерывный аналог факториала, молодой Эйлер сообщил в письме Гольдбаху о свойствах гамма-функции (1729, название принадлежит Лежандру). Через год Эйлер открыл бета-функцию, и далее неоднократно возвращался к этой теме. Гамма-функция и связанные с ней (бета, дзета, цилиндрические (Бесселя)) находят многочисленные применения в анализе, а также в теории чисел, а дзета-функция оказалась незаменимым инструментом для изучения распределения простых чисел в натуральном ряду.
Леонард ЭйлерВ приложениях анализа появляется множество новых трансцендентных функций. Когда Гольдбах и Бернулли попытались найти непрерывный аналог

Слайд 8Винченцо Риккати
В 1757 году Винченцо Риккати, исследуя секторы гиперболы, вводит гиперболические

функции ch, sh (именно с такими обозначениями) и перечисляет их основные свойства. Немало новых функций возникло в связи с неинтегрируемостью различных выражений. Эйлер определил (1768) интегральный логарифм (название предложил И. Зольднер, 1809), Л. Маскерони — интегральные синус и косинус (1790). Вскоре появляется и новый раздел математики: специальные функции.


Винченцо РиккатиВ 1757 году Винченцо Риккати, исследуя секторы гиперболы, вводит гиперболические функции ch, sh (именно с такими

Слайд 9
С этим пёстрым собранием надо было что-то делать, и математики приняло

радикальное решение: все функции, независимо от их происхождения, были объявлены равноправными. Единственное требование, предъявляемое к функции — определённость, причём имеется в виду не однозначность самой функции (она может быть и многозначной), а недвусмысленность способа вычисления её значений.

С этим пёстрым собранием надо было что-то делать, и математики приняло радикальное решение: все функции, независимо от

Слайд 10Бернулли
Первое общее определение функции встречается у Иоганна Бернулли (1718): «Функция — это

величина, составленная из переменной и постоянной». В основе этого не вполне отчётливого определения лежит идея задания функции аналитической формулой. Та же идея выступает и в определении Эйлера, данном им во «Введении в анализ бесконечных» (1748):
«Функция переменного количества есть аналитическое выражение, составленное каким-либо образом из этого переменного количества и чисел или постоянных количеств».
БернуллиПервое общее определение функции встречается у Иоганна Бернулли (1718): «Функция — это величина, составленная из переменной и постоянной».

Слайд 11
Всё же в XVIII веке отсутствовало достаточно ясное понимание различия между

функцией и её аналитическим выражением. Это нашло отражение в той критике, которой Эйлер подверг решение задачи о колебании струны, предложенное Бернулли (1753). В основе решения Бернулли лежало утверждение о возможности разложить любую функцию в тригонометрический ряд. Возражая против этого, Эйлер указал на то, что подобная разложимость доставляла бы для любой функции аналитическое выражение, в то время как функция может и не иметь его (она может быть задана графиком, «начертанным свободным движением руки»).

Всё же в XVIII веке отсутствовало достаточно ясное понимание различия между функцией и её аналитическим выражением. Это

Слайд 12Вейерштрасс
Эта критика убедительна и с современной точки зрения, ибо не все

функции допускают аналитическое изображение (правда, у Бернулли речь идёт о непрерывной функции, которая, как установил в 1885 Вейерштрасс, всегда аналитически изобразима, но она может и не разлагаться в тригонометрический ряд). Однако другие аргументы Эйлера уже ошибочны. Например, он считал, что разложение функции в тригонометрический ряд доставляет для неё единое аналитическое выражение, в то время как она может быть «смешанной» функцией, представимой на разных отрезках разными формулами. На самом деле одно другому не противоречит, но в ту эпоху казалось невозможным, чтобы два аналитических выражения, совпадая на части отрезка, не совпадали на всём его протяжении. Позже, при исследовании функций многих переменных он понял ограниченность прежнего определения и признал разрывные функции, а затем, после исследования комплексного логарифма — даже многозначные функции.
ВейерштрассЭта критика убедительна и с современной точки зрения, ибо не все функции допускают аналитическое изображение (правда, у

Слайд 13
Под влиянием теории бесконечных рядов, которые давали алгебраическое представление почти любой

гладкой зависимости, наличие явной формулы постепенно перестало быть обязательным для функции. Логарифм или показательная функция, например, вычисляются как пределы бесконечных рядов; такой подход распространился и на другие нестандартные функции. С рядами стали обращаться как с конечными выражениями, первоначально никак не обосновывая корректность операций и даже не гарантируя сходимость ряда.
Начиная с «Дифференциального исчисления» (1755), Эйлер фактически принимает современное определение числовой функции как произвольного соответствия чисел:
Когда некоторые количества зависят от других таким образом, что при изменении последних и сами они подвергаются изменению, то первые называются функциями вторых.


Под влиянием теории бесконечных рядов, которые давали алгебраическое представление почти любой гладкой зависимости, наличие явной формулы постепенно

Слайд 14Близко к современному и определение Лобачевского:…Общее понятие функции требует, чтобы функцией

от x называть число, которое даётся для каждого x и вместе с x постепенно изменяется. Значение функции может быть дано или аналитическим выражением, или условием, которое подаёт средство испытывать все числа и выбирать одно из них, или, наконец, зависимость может существовать и оставаться неизвестной… Обширный взгляд теории допускает существование зависимости только в том смысле, чтобы числа одни с другими в связи понимать как бы данными вместе.

С начала XIX века уже всё чаще и чаще определяют понятие функции без упоминания об её аналитическом изображении. В «Трактате по дифференциальному и интегральному исчислению» (1797—1802) Лакруа говорится: «Всякая величина, значение которой зависит от одной или многих других величин, называется функцией этих последних».
В «Аналитической теории тепла» Фурье (1822) имеется фраза: «Функция fx обозначает функцию совершенно произвольную, то есть последовательность данных значений, подчинённых или нет общему закону и соответствующих всем значениям x, содержащимся между 0 и какой-либо величиной x».

Близко к современному и определение Лобачевского:…Общее понятие функции требует, чтобы функцией от x называть число, которое даётся

Слайд 15Дирихле
Таким образом, современное определение функции, свободное от упоминаний об аналитическом

задании, обычно приписываемое Дирихле, неоднократно предлагалось и до него. Вот определение Дирихле (1837):
у есть функция переменной х (на отрезке ), если каждому значению х (на этом отрезке) соответствует совершенно определённое значение у, причем безразлично, каким образом установлено это соответствие — аналитической формулой, графиком, таблицей, либо даже просто словами.


Дирихле Таким образом, современное определение функции, свободное от упоминаний об аналитическом задании, обычно приписываемое Дирихле, неоднократно предлагалось

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть