Презентация, доклад на тему Системы счисления 9 класс

Система счисления - это знаковая система, в которой приняты определённые правила записи чисел. Цифры - знаки, при помощи которых записываются числа,.Алфавит системы счисления - совокупность цифр.Общие сведенияДревнеславянская система счисленияВавилонская система счисленияЕгипетская система счисления

Слайд 1Подготовил: учитель информатики Смирнова М.В.
СИСТЕМЫ СЧИСЛЕНИЯ


МАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ

Подготовил: учитель информатики Смирнова М.В.СИСТЕМЫ СЧИСЛЕНИЯМАТЕМАТИЧЕСКИЕ ОСНОВЫ ИНФОРМАТИКИ

Слайд 2Система счисления - это знаковая система, в которой приняты определённые правила

записи чисел.
Цифры - знаки, при помощи которых записываются числа,.
Алфавит системы счисления - совокупность цифр.

Общие сведения

Древнеславянская система счисления

Вавилонская система счисления

Египетская система счисления

Система счисления - это знаковая система, в которой приняты определённые правила записи чисел. Цифры - знаки, при

Слайд 3Узловые числа обозначаются цифрами.
Узловые и алгоритмические числа
Алгоритмические числа получаются в результате

каких-либо операций из узловых чисел.

× 100 +

× 10 +

=

Узловые числа обозначаются цифрами.Узловые и алгоритмические числаАлгоритмические числа получаются в результате каких-либо операций из узловых чисел.× 100

Слайд 4Простейшая и самая древняя система - так называемая унарная система счисления.


В ней для записи любых чисел используется всего один символ - палочка, узелок, зарубка, камушек.

Унарная система счисления

Примеры узлов «кипу»

Простейшая и самая древняя система - так называемая унарная система счисления. В ней для записи любых чисел

Слайд 5Римская система счисления
Непозиционная система счисления
Система счисления называется непозиционной, если количественный эквивалент

(количественное значение) цифры в числе не зависит от её положения в записи числа.

Здесь алгоритмические числа получаются путём сложения и вычитания узловых чисел с учётом следующего правила:
каждый меньший знак, поставленный справа от большего, прибавляется к его значению, а каждый меньший знак, поставленный слева от большего, вычитается из него.

Римская система счисленияНепозиционная система счисленияСистема счисления называется непозиционной, если количественный эквивалент (количественное значение) цифры в числе не

Слайд 6Система счисления называется позиционной, если количественный эквивалент цифры в числе зависит

от её положения в записи числа.
Основание позиционной системы счисления равно количеству цифр, составляющих её алфавит.

Алфавит десятичной системы составляют цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Позиционная система счисления

Система счисления называется позиционной, если количественный эквивалент цифры в числе зависит от её положения в записи числа.Основание

Слайд 7Цифры 1234567890 сложились в Индии около 400 г. н. э.
Арабы стали

пользоваться подобной нумерацией около 800 г. н. э.

Примерно в 1200 г. н. э. эту нумерацию начали применять в Европе.

Десятичная система счисления

Цифры 1234567890 сложились в Индии около 400 г. н. э.Арабы стали пользоваться подобной нумерацией около 800 г.

Слайд 8
Двоичная система счисления
Двоичной системой счисления называется позиционная система счисления с основанием

2.
Двоичный алфавит: 0 и 1.

Для целых двоичных чисел можно записать:
an–1an–2…a1a0 = an–1×2n–1 + an–2×2n–2 +…+ a0×20
Например:

100112 =1×24+0×23+0×22+1×21+1×20 = 24 +21 + 20 =1910



Правило перевода двоичных чисел в десятичную систему счисления:

Вычислить сумму степеней двойки, соответствующих единицам в свёрнутой форме записи двоичного числа

Двоичная система счисленияДвоичной системой счисления называется позиционная система счисления с основанием 2.Двоичный алфавит: 0 и 1.Для целых

Слайд 9Правило перевода целых десятичных чисел в двоичную систему счисления
an–1×2n–1+an–2×2n–2+…

a1×21 +a0

= an–1×2n–2 +…+ a1 (остаток a0)

2

an–1×2n–1+an–2×2n–2+… a1

= an–1×2n–3+…+ a2 (остаток a1)

2

. . .

an–1×2n–1+an–2×2n–2+… a2

= an–1×2n–4 +…+ a3 (остаток a2)

2

На n-м шаге получим набор цифр: a0a1a2…an–1

Правило перевода целых десятичных чисел в двоичную систему счисления  an–1×2n–1+an–2×2n–2+… a1×21 +a0= an–1×2n–2 +…+ a1 (остаток

Слайд 10«Компьютерные» системы счисления
Двоичная система используется в компьютерной технике, так как:
двоичные числа

представляются в компьютере с помощью простых технических элементов с двумя устойчивыми состояниями;
представление информации посредством только двух состояний надёжно и помехоустойчиво;
двоичная арифметика наиболее проста;
существует математический аппарат, обеспечивающий логические преобразования двоичных данных.

Двоичный код удобен для компьютера.
Человеку неудобно пользоваться длинными и однородными кодами. Специалисты заменяют двоичные коды на величины в восьмеричной или шестнадцатеричной системах счисления.

«Компьютерные» системы счисленияДвоичная система используется в компьютерной технике, так как:двоичные числа представляются в компьютере с помощью простых

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть