Слайд 1Классификация вычислительных машин
в
ГБПОУ КК «КАТТ»
Преподаватель информатики и математики А.Ю. Ермоленко
Слайд 2 План:
Из истории
Виды машин
Структура строения
Поколения
Перспективы развития
Архитектура машин
Литература
Слайд 3Электронная вычислительная машина, компьютер – комплекс технических средств, предназначенных для автоматической
обработки информации в процессе решения вычислительных и информационных задач.
По принципу действия вычислительные машины делятся на три больших класса: аналоговые (АВМ), цифровые (ЦВБ) и гибридные (ГВМ).
Цифровые вычислительные машины - вычислительные машины дискретного действия с информацией, представленной в дискретно, а точнее, в цифровой форме.
Аналоговые вычислительные машины - вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой – либо физической величины.
Гибридные вычислительные машины - вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме; они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.
Слайд 4
По этапам создания и используемой элементной базе ЭВМ условно делятся на
поколения:
1 – е поколение, 50 – е гг.: ЭВМ на электронных вакуумных лампах;
2 – е поколение, 60 – е гг.: ЭВМ на дискретных полупроводниковых приборах (транзисторах);
3 – е поколение, 70 – е гг.: ЭВМ на полупроводниковых интегральных схемах с малой и средней степенью интеграции;
4 – е поколение, 80 – е гг.: ЭВМ на больших и сверхбольших интегральных схемах – микропроцессорах;
5 – е поколение, 90 – е гг.: ЭВМ с многими десятками параллельно работающих микропроцессоров, позволяющих строить эффективные системы обработки знаний; ЭВМ на сверхсложных микропроцессорах с параллельно – векторной структурой, одновременно выполняющих десятки последовательных команд программы;
6 – е и последующие поколения: оптоэлектронные ЭВМ С массовым параллелизмом и нейронной структурой – с распределенной сетью большого числа несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем.
Слайд 10Классификация ЭВМ по назначению.
По назначению ЭВМ можно разделить на три группы:
универсальные, проблемно – ориентированные и специализированные.
Универсальные ЭВМ предназначены для решения самых различных инженерно – технических задач: экономических, математических, информационных и других задач, отличающихся сложность алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах.
Проблемно – ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам; они обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами.
Специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций. Такая узкая ориентация ЭВМ позволяет четко специализировать их структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы.
Слайд 11Классификация ЭВМ по размерам и вычислительной мощности:
Исторически первыми появились большие ЭВМ,
элементная база которых прошла путь от электронных ламп до интегральных схем со сверхвысокой степенью интеграции.
Производительность больших ЭВМ оказалась недостаточной для ряда задач: прогнозирования метеообстановки, управления сложными оборонными комплексами, моделирования экологических систем и др. Это явилось предпосылкой для разработки и создания супер ЭВМ, самых мощных вычислительных систем, интенсивно развивающихся и в настоящее время.
Дальнейшие успехи в области элементной базы и архитектурных решений привели к возникновению супермини ЭВМ – вычислительной машины, относящейся по архитектуре , размерам и стоимости к классу малых ЭВМ, но по производительности сравнимой с большой ЭВМ.
Изобретение в 1969 г. микропроцессора (МП) привело к появлению в 70-х гг. еще одного класса ЭВМ – микро ЭВМ (рис. 2). Именно наличие МП служило первоначально определяющим признаком микро ЭВМ. Сейчас микропроцессоры используются во всех без исключения классах ЭВМ.
Слайд 12Классификация микро ЭВМ:
Многопользовательские микро ЭВМ – это мощные микро ЭВМ, оборудованные
несколькими видеотерминалами и функционирующие в режиме разделения времени, что позволяет эффективно работать на них сразу нескольким пользователям.
Персональные компьютеры (ПК) – однопользовательские микро ЭВМ, удовлетворяющие требованиям общедоступности и универсальности применения.
Рабочие станции (workstation) представляют собой однопользовательские мощные микро ЭВМ, специализированные для выполнения определенного вида работ (графических, инженерных, издательских и др.).
Серверы (server) – многопользовательские мощные микро ЭВМ в вычислительных сетях, выделенные для обработки запросов от всех станций сети.
Конечно, вышеприведенная классификация весьма условна, ибо мощная современная ПК, оснащенная проблемно-ориентированным программным и аппаратным обеспечением, может использоваться и как полноправная рабочая станция, и как многопользовательская микро ЭВМ, и как хороший сервер, по своим характеристикам почти не уступающий малым ЭВМ.
Слайд 13
Большие ЭВМ за рубежом часто называют мэйнфреймами (Mainframe). К мэйнфреймам относят,
как правило, компьютеры, имеющие следующие характеристики:
· производительность не менее 10 MIPS;
· основную память емкостью от 64 до 10000 Мбайт;
· внешнюю память не менее 50 Гбайт;
· многопользовательский режим работы (обслуживают одновременно от 16 до 1000 пользователей)
Основные направления эффективного применения мейнфреймов – это решение научно-технических задач, работа в вычислительных системах с пакетной обработкой информации, работа с большими базами данных, управление вычислительными сетями и их ресурсами. Последнее направление - использование мэйнфреймов в качестве больших серверов вычислительных сетей часто отмечается специалистами среди наиболее актуальных.
Слайд 14
Зарубежные фирмы определяют рейтинг мэйнфреймов, учитывая многие показатели:
- надежность:
- производительность;
- емкость
основной и внешней памяти;
- время обращения к основной памяти;
- время доступа и трансферт внешних запоминающих устройств;
- характеристики КЭШ-памяти;
- количество каналов и эффективность системы ввода-вывола;
- аппаратную и программную совместимость с другими ЭВМ;
- поддержку сети
Слайд 15МАЛЫЕ ЭВМ :
Малые ЭВМ (мини – ЭВМ) – надежные, недорогие и
удобные в эксплуатации компьютеры, обладающие несколько более низкими по сравнению с мэйнфреймами возможностями.
Мини – ЭВМ (и наиболее мощные из них супермини - ЭВМ) обладают следующими характеристиками:
· производительность – до 100 MIPS
· емкость основной памяти – 4 - 512 Мбайт
· емкость дисковой памяти – 2 - 100 Гбайт
Слайд 16К супер ЭВМ относятся мощные многопроцессорные вычислительные машины с быстродействием сотни
миллионов – десятки миллиардов операций в секунду. Супер ЭВМ имеет следующие характеристики:
· высоко параллельная много процессорная вычислительная система с быстродействием примерно 100000 MFLOPS;
· емкость: оперативной памяти 10 Гбайт, дисковой памяти 1 – 10 Тбайт;
· разрядность 64; 128 бит.
Супер ЭВМ создаются в виде высоко параллельных многопроцессорных вычислительных системах (МПВС).
· магистральные МПВС, в которых процессоры одновременно выполняют разные операции над последовательным потоком обрабатываемых данных;
· векторные МПВС, в которых все процессоры одновременно выполняют одну команду над различными данными – однократный поток команд с многократным потоком данных;
· матричные МПВС, в которых МП одновременно выполняет разные операции над несколькими последовательными потоками обрабатываемых данных – многократный поток команд с многократным потоком данных.
Слайд 17ЗАКЛЮЧЕНИЕ
Современное общество живет в период огромного роста объемов информационных потоков
во всех сферах человеческой деятельности. Требования к своевременности, достоверности и полноте информации постоянно повышаются. Только на основе своевременного пополнения, накопления, переработки информации возможно рациональное управление и обоснованное принятие решений. С созданием Электронно-Вычислительных Машин появилась реальная возможность переложить на них трудоемкие операции, что коренным образом изменило технологию производства, повысило производительность и условия труда. Сейчас трудно представить какую-либо область, где не использовался бы компьютер. Но для того, чтобы уметь эффективно его использовать, необходимы элементарные знания об его устройстве.
Слайд 18Литература:
Информатика. А. В. Могилев, Н.И. Пак, Е. К. Женнер. Москва,
2003.
Информатика. Базовый курс, 2 - е издание под ред. профессора С. В. Симоновича. Питер, 2005.
Информатика, 3 – е издание. А. Н. Степанов. Питер, 2003.
Вычислительные системы, сети и телекоммуникации. В. Л. Брондо. Москва, 2004.
Информатика и вычислительные системы .В. Г. Олифер, Н. А. Олифер.Питер,2003.