истина
ложь
истина
истина
Таблицы истинности
¬(p ∧ (p ⇔ ¬p))
(p → p) ∨ ¬p
p ⇔ p ∧ (¬p → p ∧ p)
p ∧ (p ⇔ ¬p)
¬(¬p → p)
¬(p ⇔ ¬p)
(p ∨ p) → (p ∧ p)
x ∧ (y ∧ z)
(x ∧ y) ∧ z
x → (y → z)
x ∧ y → z
(x ∧ y) ⇔ (z ∨ ¬y)
((x ∨ y) ∧ z) ⇔ ((x ∧ z) ∨ (y ∧ z))
x ∧ (y ∧ z)
x ∧ (1 ∧ 1)
x ∧ 1
0 ∧ 1
0 (ложь)
x ∧ (y ∧ z)
Таблицы истинности
(x ∧ y) ∧ z
(0 ∧ 1) ∧ z
0 ∧ z
0 ∧ 1
0 (ложь)
(x ∧ y) ∧ z
Таблицы истинности
x → (y → z)
x → (1 → 1)
x → 1
0 → 1
1 (истина)
x → (y → z)
Таблицы истинности
x ∧ y → z
0 ∧ 1 → z
0 → z
0 → 1
1 (истина)
x ∧ y → z
Таблицы истинности
(x ∧ y) ⇔ (z ∨ ¬y)
(x ∧ y) ⇔ (z ∨ ¬1)
(x ∧ y) ⇔ (z ∨ 0)
(x ∧ y) ⇔ (z ∨ 0)
(0 ∧ 1) ⇔ (1 ∨ 0)
0 ⇔ 1
0 (ложь)
(x ∧ y) ⇔ (z ∨ ¬y)
Таблицы истинности
((x ∨ y) ∧ z) ⇔ ((x ∧ z) ∨ (y ∧ z))
((0 ∨ 1) ∧ z) ⇔ ((0 ∧ 1) ∨ (1 ∧ 1))
(( 1 ) ∧ z) ⇔ (( 0 ) ∨ ( 1 ))
(1 ∧ 1) ⇔ (0 ∨ 1)
1 ⇔ 1
1 (истина)
((x ∨ y) ∧ z) ⇔ ((x ∧ z) ∨ (y ∧ z))
Таблицы истинности
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть