Презентация, доклад на тему История Развития Вычислительной Техники и Э.В.М.

Содержание

История развития вычислительной техники

Слайд 1Презентация
На тему :
История Развития Вычислительной Техники


и Э.В.М.


Работу подготовила:
Воробьёва Любовь

ПрезентацияНа тему : История Развития Вычислительной Техники

Слайд 2История развития вычислительной техники

История развития вычислительной техники

Слайд 3 Ещё 1500 лет назад для облегчения вычислений стали использовать счёты. В

1642 г. Блез Паскаль изобрёл устройство, механически выполняющее сложение чисел, 1654Ещё 1500 лет назад для облегчения вычислений стали использовать счёты. В 1642 г. Блез Паскаль изобрёл устройство, механически выполняющее сложение чисел, 1654  -логарифмическая линейкаЕщё 1500 лет назад для облегчения вычислений стали использовать счёты. В 1642 г. Блез Паскаль изобрёл устройство, механически выполняющее сложение чисел, 1654  -логарифмическая линейка, изобретение перфокарты, первое устройство, сделавшее вычисления быстрыми и получившее широкое распространение. а в 1694 г. Готфрид Лейбниц сконструировал арифмометр, позволяющий механически производить четыре арифметических действия, 1822-1838 — Разностная машина Чарльза Бэббиджа, первая попытка создать программируемое вычислительное устройство.

1. Самые первые устройства для счета

Ещё 1500 лет назад для облегчения вычислений стали использовать счёты. В 1642 г. Блез Паскаль изобрёл

Слайд 42. Блез Паскаль
Начало развития технологий принято считать с Блеза Паскаля,

который в 1642г. изобрел устройство, механически выполняющее сложение чисел. Его машина предназначалась для работы с 6-8 разрядными числами и могла только складывать и вычитать, а также имела лучший, чем все до этого, способ фиксации результата. Машина Паскаля имела размеры 36(13(8 сантиметров. Инженерные идеи Паскаля оказали огромное влияние на многие другие изобретения в области вычислительной техники.
2. Блез Паскаль Начало развития технологий принято считать с Блеза Паскаля, который в 1642г. изобрел устройство, механически

Слайд 5 3. Первый универсальный программируемый компьютер
Чарльз Бэббидж изобрел первый универсальный программируемый

компьютер.
В 1812 году английский математик Чарльз Бэббидж начал работать над так называемой разностной машиной, которая должна была вычислять любые функции, в том числе и тригонометрические, а также составлять таблицы. Свою первую разностную машину Бэббидж построил в 1822 году и рассчитывал на ней таблицу квадратов, таблицу значений функции y=x2+x+41 и ряд других таблиц. Однако из-за нехватки средств эта машина не была закончена. Но эта неудача не остановила Бэббиджа, и в 1834 году он приступил к новому проекту – созданию Аналитической машины, которая должна была выполнять вычисления без участия человека. С 1842 по 1848 год Бэббидж упорно работал, расходуя собственные средства. К сожалению, он не смог довести до конца работу по созданию Аналитической машины – она оказалась слишком сложной для техники того времени. Заслуга Бэббиджа в том, что он впервые предложил и частично реализовал, идею программно-управляемых вычислений. Именно Аналитическая машина по своей сути явилась прототипом современного компьютера. Эта идея и ее инженерная детализация опередили время на 100 лет!
3. Первый универсальный программируемый компьютер Чарльз Бэббидж изобрел первый универсальный программируемый компьютер. В 1812 году английский

Слайд 64. Герман Холлерит
Первый статистический табулятор был построен американцем Германом

ХоллеритомПервый статистический табулятор был построен американцем Германом Холлеритом, с целью ускорить обработку результатов переписи населенияПервый статистический табулятор был построен американцем Германом Холлеритом, с целью ускорить обработку результатов переписи населения, которая проводилась в СШАПервый статистический табулятор был построен американцем Германом Холлеритом, с целью ускорить обработку результатов переписи населения, которая проводилась в США в 1890Первый статистический табулятор был построен американцем Германом Холлеритом, с целью ускорить обработку результатов переписи населения, которая проводилась в США в 1890 г. Идея возможности использования для этих целей перфокарт принадлежала высокопоставленному чиновнику бюро переписи Джону Шоу Биллингсу (будущему тестю Холлерита). Холлерит закончил работу над табулятором к 1890 г. Затем в в бюро переписи были проведены испытания, и табулятор Холлерита в соревновании с несколькими другими системами был признан лучшим. С изобретателем был заключен контракт. После проведения переписи Холлерит был удостоен нескольких премий, и получил звание профессора в Колумбийском университете
4. Герман Холлерит  Первый статистический табулятор был построен американцем Германом ХоллеритомПервый статистический табулятор был построен американцем

Слайд 7

5. Цифровая машина Z1

В 1938 году Цьюз завершил работу над прототипом электромеханического двоичного программируемого калькулятора V1 (после войны он был переименован в Z1). Эта машина могла работать с плавающей точкой и отрицательными числами.


Слайд 8Поколения Э.В.М.:

Поколения Э.В.М.:

Слайд 9 Первое поколение ЭВМ:
Развитие ЭВМ делится на несколько периодов. Поколения ЭВМ

каждого периода отличаются друг от друга элементной базой и математическим обеспе­чением. Первое поколение (1945-1954) - ЭВМ на электронных лампах (вроде тех, что были в старых телевизорах). Это доисторические времена, эпоха становления вычислительной техники. Большинство машин первого поколения были экспериментальными устройствами и строились с целью проверки тех или иных теоретических положений. Вес и размеры этих компьютерных динозавров, которые нередко требовали для себя отдельных зданий, давно стали легендой. Ввод чисел в первые машины производился с помощью перфокарт, а программное управление последовательностью выполнения операций осуществлялось, например в ENIAC, как в счетно-аналитических машинах, с помощью штеккеров и наборных полей. Хотя такой способ программирования и требовал много времени для подготовки машины, то есть для соединения на наборном поле (коммутационной доске) отдельных блоков машины, он позволял реализовывать счетные "способности" ENIAC'а и тем выгодно отличался от способа программной перфоленты, характерного для релейных машин. Солдаты, приписанные к этой огромной машине, постоянно носились вогруг нее, скрипя тележками, доверху набитыми электронными лампами. Стоило перегореть хотя бы одной лампе, как ENIAC тут же вставал, и начиналась суматоха: все спешно искали сгоревшую лампу. Одной из причин - возможно, и не слишком достоверной - столь частой замены ламп считалась такая: их тепло и свечение привлекали мотыльков, которые залетали внутрь машины и вызывали короткое замыкание. Если это правда, то термин "жучки" (bugs), под которым подразумевают ошибки в программных и аппаратных средствах компьютеров, приобретает новый смысл. Когда все лампы работали, инженерный персонал мог настроить ENIAC на какую-нибудь задачу, вручную изменив подключение 6 000 проводов. Все эти провода приходилось вновь переключать, когда вставала другая задача.
Первое поколение ЭВМ:  Развитие ЭВМ делится на несколько периодов. Поколения ЭВМ каждого периода отличаются друг

Слайд 10Первой серийно выпускавшейся ЭВМ 1-го поколения стал компьютер UNIVAC (Универсальный автоматический

компьютер). Разработчики: Джон Мочли (John Mauchly) и Дж. Преспер Эккерт (J. Prosper Eckert). Он был первым электронным цифровым компьютером общего назначения. UNIVAC, работа по созданию которого началась в 1946 году и завершилась в 1951-м, имел время сложения 120 мкс, умножения -1800 мкс и деления - 3600 мкс. UNIVAC мог сохранять 1000 слов, 12000 цифр со временем доступа до 400 мкс максимально. Магнитная лента несла 120000 слов и 1440000 цифр. Ввод/вывод осуществлялся с магнитной ленты, перфокарт и перфоратора. Его первый экземпляр был передан в Бюро переписи населения США.     Программное обеспечение компьютеров 1-го поколения состояло в основном из стандартных подпрограмм.     Машины этого поколения: « ENIAC », «МЭСМ», «БЭСМ», «IBM -701», «Стрела», «М-2», «М-3», «Урал», «Урал-2», «Минск-1», «Минск-12», «М-20» и др. Эти машины занимали большую площадь, использовали много электроэнергии и состояли из очень большого числа электронных ламп. Например, машина «Стрела» состояла из 6400 электронных ламп и 60 тыс. штук полупроводниковых диодов. Их быстродействие не превышало 2—3 тыс. операций в секунду, оперативная память не превышала 2 Кб. Только у машины «М-2» (1958) оперативная память была 4 Кб, а быстродействие 20 тыс. операций в секунду.
Основные технические характеристики ЭВМ "УРАЛ-1" Структура команд одноадресная. Система счисления двоичная. Способ представления чисел - с фиксированной запятой и с плавающей запятой по стандартным программам. Разрядность-35 двоичных разрядов (10,5 десятичных) и один разряд для знака числа. Диапазон представляемых чисел: от 1 до 10-10.5. Время выполнения отдельных операций: а) деления - 20 мксек; б) нормализации - 20 мсек; в) остальных операций-10 мсек. Количество команд-29. Характеристики ЗУ: емкость ОЗУ на магнитном барабане - 1024 тридцатишестиразрядных числа или команды; емкость НМЛ - до 40 000 тридцатишестиразрядных чисел или 8000 команд. Устройство ввода - на перфорированной киноленте шириной 35 мм. Вывод - печатающее устройство. Скорость печати - 100±10 чисел в минуту. Машина построена на одноламповых типовых ячейках. Питание машины от сети трехфазного переменного тока напряжением 220В ±10%, частотой 50Гц. Потребляемая мощность 7,5 кВт. Занимаемая площадь 50 кв. м.
Первой серийно выпускавшейся ЭВМ 1-го поколения стал компьютер UNIVAC (Универсальный автоматический компьютер). Разработчики: Джон Мочли (John Mauchly)

Слайд 11Второе поколение ЭВМ:
   ЭВМ 2-го поколения были разработаны в 1950—60 гг. В

качестве основного элемента были использованы уже не электронные лампы, а полупроводниковые диоды и транзисторы, а в качестве устройств памяти стали применяться магнитные сердечники и магнитные барабаны - далекие предки современных жестких дисков. Второе отличие этих машин — это то, что появилась возможность программирования на алгоритмических языках. Были разработаны первые языки высокого уровня - Фортран, Алгол, Кобол. Эти два важных усовершенствования позволили значительно упростить и ускорить написание программ для компьютеров. Программирование, оставаясь наукой, приобретает черты ремесла. Все это позволило резко уменьшить габариты и стоимость компьютеров, которые тогда впервые стали строиться на продажу.    
Машины этого поколения: «РАЗДАН-2», «IВМ-7090», «Минск-22,-32», «Урал- 14,-16», «БЭСМ-3,-4,-6», «М-220, -222» и др.     Применение полупроводников в электронных схемах ЭВМ привели к увеличению достоверности, производительности до 30 тыс. операций в секунду, и опера­тивной памяти до 32 Кб. Уменьшились габаритные размеры машин и потребление электроэнергии. Но главные достижения этой эпохи принадлежат к области программ. На втором поколении компьютеров впервые появилось то, что сегодня называется операционной системой. Соответственно расширялась и сфера применения компьютеров. Теперь уже не только ученые могли рассчитывать на доступ к вычислительной технике; компьютеры нашли применение в планировании и управлении, а некоторые крупные фирмы даже компьютеризовали свою бухгалтерию, предвосхищая моду на двадцать лет.
Основные технические характеристики ЭВМ "Урал-16": Структура команд двухадресная. Система счисления двоичная, Способ представления чисел: с плавающей запятой. Разрядность: 36 двоичных разрядов (мантисса числа — 29 разрядов, знак мантиссы -- 1 разряд, порядок — 5 разрядов, знак порядка — 1 разряд). Быстродействие 5000 операций/с. Количество команд (основных) 17. Каждая операция имеет 8 модификаций. Характеристики запоминающих устройств. Емкость ОЗУ на ферритах 2 К слов; время обращения к ОЗУ 24 мкс, Емкость внешнего НМЛ 120000 чисел; скорость считывания с НМЛ 2000 чисел/с. Устройства ввода — вывода обеспечивают ввод информации в машину с фотосчитывающего устройства на кинолепте со скоростью 35 чисел/с и вывод результатов вычислений на печатающее устройство со скоростью 20 чисел/с. Питание машины от сети переменного тока напряжением 380/220 В, частотой 50 Гц. Потребляемая мощность около 3 кВт. Занимаемая площадь 20 кв. м
Второе поколение ЭВМ:   ЭВМ 2-го поколения были разработаны в 1950—60 гг. В качестве основного элемента были использованы уже

Слайд 12Третье поколение ЭВМ:
Разработка в 60-х годах интегральных схем - целых устройств

и узлов из десятков и сотен транзисторов, выполненных на одном кристалле полупроводника (то, что сейчас называют микросхемами) привело к созданию ЭВМ 3-го поколения. В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной. Применение интегральных схем намного увеличило возможности ЭВМ. Теперь центральный процессор получил возможность параллельно работать и управлять многочисленными периферийными устройствами. ЭВМ могли одновременно обрабатывать несколько программ (принцип мультипрограммирования). В результате реализации принципа мультипрограммирования появилась возможность работы в режиме разделения времени в диалоговом режиме. Удаленные от ЭВМ пользователи получили возможность, независи­мо друг от друга, оперативно взаимодействовать с машиной.     В эти годы производство компьютеров приобретает промышленный размах. Пробившаяся в лидеры фирма IBM первой реализовала семейство ЭВМ - серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM. Начиная с ЭВМ 3-го поколения, традиционным стала разработка серийных ЭВМ. Хотя машины одной серии сильно отличались друг от друга по возможностям и производительности, они были информационно, программно и аппаратно совместимы. Например, странами СЭВ были выпущены ЭВМ единой серии («ЕС ЭВМ») «ЕС-1022», «ЕС-1030», «ЕС-1033», «ЕС-1046», «ЕС-1061», «ЕС-1066» и др. Производительность этих машин достигала от 500 тыс. до 2 млн. операций в секунду, объём оперативной памяти достигал от 8 Мб до 192 Мб.     К ЭВМ этого поколения также относится «IВМ-370», «Электроника — 100/25», «Электроника — 79», «СМ-3», «СМ-4» и др.     Для серий ЭВМ было сильно расширено программное обеспечение (операционные системы, языки программирования высокого уровня, прикладные программы и т.д.).     Невысокое качество электронных комплектующих было слабым местом советских ЭВМ третьего поколения. Отсюда постоянное отставание от западных разработок по быстродействию, весу и габаритам, но, как настаивают разработчики СМ, не по функциональным возможностям. Для того, чтобы компенсировать это отставание, в разрабатывались спецпроцессоры, позволяющие строить высокопроизводительные системы для частных задач. Оснащенная спецпроцессором Фурье-преобразований СМ-4, например, использовалась для радиолокационного картографирования Венеры.     Еще в начале 60-х появляются первые миникомпьютеры - небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Миникомпьютеры представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов. Известное семейство миникомпьютеров PDP фирмы Digital Equipment послужило прототипом для советской серии машин СМ.    Но и это еще не все - поистине, рубеж 60-х и 70-х годов был судьбоносным временем. В 1969 г. зародилась первая глобальная компьютерная сеть - зародыш того, что мы сейчас называем Интернетом. И в том же 1969 году одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.
Третье поколение ЭВМ:Разработка в 60-х годах интегральных схем - целых устройств и узлов из десятков и сотен

Слайд 13Четвертое поколение ЭВМ:
   К сожалению, начиная с середины 1970-х годов стройная картина

смены поколений нарушается. Все меньше становится принципиальных новаций в компьютерной науке. Прогресс идет в основном по пути развития того, что уже изобретено и придумано, - прежде всего за счет повышения мощности и миниатюризации элементной базы и самих компьютеров.     Обычно считается, что период с 1975 г. принадлежит компьютерам четвертого поколения. Их элементной базой стали большие интегральные схемы (БИС. В одном кристалле интегрированно до 100 тысяч элементов). Быстродействие этих машин составляло десятки млн. операций в секунду, а оперативная память достигла сотен Мб. Появились микропроцессоры (1971 г. фирма Intel), микро-ЭВМ и персональные ЭВМ. Стало возможным коммунальное использование мощности разных машин (соединение машин в единый вычислительный узел и работа с разделением времени). Однако, есть и другое мнение - многие полагают, что достижения периода 1975-1985 г.г. не настолько велики, чтобы считать его равноправным поколением. Сторонники такой точки зрения называют это десятилетие принадлежащим "третьему-с половиной" поколению компьютеров. И только с 1985г., когда появились супербольшие интегральные схемы (СБИС. В кристалле такой схемы может размещаться до 10 млн. элементов.), следует отсчитывать годы жизни собственно четвертого поколения, здравствующего и по сей день.     Развитие ЭВМ 4-го поколения пошло по 2 направлениям:     1-ое направление — создание суперЭВМ - комплексов многопроцессорных машин. Быстродействие таких машин достигает нескольких миллиардов операций в секунду. Они способны обрабатывать огромные массивы информации. Сюда входят комплексы ILLIAS-4, CRAY, CYBER, «Эльбрус-1», «Эльбрус-2» и др.
Многопроцессорные вычислительные комплексы (МВК) "Эльбрус-2" активно использовались в Советском Союзе в областях, требующих большого объема вычислений, прежде всего, в оборонной отрасли. Вычислительные комплексы "Эльбрус-2" эксплуатировались в Центре управления космическими полетами, в ядерных исследовательских центрах. Наконец, именно комплексы "Эльбрус-2" с 1991 года использовались в системе противоракетной обороны и на других военных объектах.     2-ое направление — дальнейшее развитие на базе БИС и СБИС микро-ЭВМ и персональных ЭВМ (ПЭВМ). Первыми представителями этих машин являются Apple, IBM - PC ( XT , AT , PS /2), «Искра», «Электроника», «Мазовия», «Агат», «ЕС-1840», «ЕС-1841» и др.     Начиная с этого поколения ЭВМ стали называть компьютерами.     Благодаря появлению и развитию персональных компьютеров (ПК), вычислительная техника становится по-настоящему массовой и общедоступной. Складывается парадоксальная ситуация: несмотря на то, что персональные и миникомпьютеры по-прежнему во всех отношениях отстают от больших машин, львиная доля новшеств - графический пользовательский интерфейс, новые периферийные устройства, глобальные сети - обязаны своим появлением и развитием именно этой "несерьезной" техники. Большие компьютеры и суперкомпьютеры, конечно же, не вымерли и продолжают развиваться. Но теперь они уже не доминируют на компьютерной арене, как было раньше
Четвертое поколение ЭВМ:   К сожалению, начиная с середины 1970-х годов стройная картина смены поколений нарушается. Все меньше становится

Слайд 14Пятое поколение ЭВМ:
ЭВМ пятого поколения — это ЭВМ будущего. Программа разработки,

так называемого, пятого поколения ЭВМ была принята в Японии в 1982 г. Предполагалось, что к 1991 г. будут созданы принципиально новые компьютеры, ориентированные на решение задач искусственного интеллекта. С помощью языка Пролог и новшеств в конструкции компьютеров планировалось вплотную подойти к решению одной из основных задач этой ветви компьютерной науки - задачи хранения и обработки знаний. Коротко говоря, для компьютеров пятого поколения не пришлось бы писать программ, а достаточно было бы объяснить на "почти естественном" языке, что от них требуется.     Предполагается, что их элементной базой будут служить не СБИС, а созданные на их базе устройства с элементами искусственного интеллекта. Для увеличения памяти и быстродействия будут использоваться достижения оптоэлектроники и биопроцессоры.     На ЭВМ пятого поколения ставятся совершенно другие задачи, нежели при разработки всех прежних ЭВМ. Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие "интеллектуализации" компьютеров - устранения барьера между человеком и компьютером.     К сожалению, японский проект ЭВМ пятого поколения повторил трагическую судьбу ранних исследований в области искусственного интеллекта. Более 50-ти миллиардов йен инвестиций были потрачены впустую, проект прекращен, а разработанные устройства по производительности оказались не выше массовых систем того времени. Однако, проведенные в ходе проекта исследования и накопленный опыт по методам представления знаний и параллельного логического вывода сильно помогли прогрессу в области систем искусственного интеллекта в целом.    
Уже сейчас компьютеры способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволяет общаться с компьютерами всем пользователям, даже тем, кто не имеет специальных знаний в этой области.     Многие успехи, которых достиг искусственный интеллект, используют в промышленности и деловом мире. Экспертные системы и нейронные сети эффективно используются для задач классификации (фильтрация СПАМа, категоризация текста и т.д.).
Добросовестно служат человеку генетические алгоритмы (используются, например, для оптимизации портфелей в инвестиционной деятельности), робототехника (промышленность, производство, быт - везде она приложила свою кибернетическую руку), а также многоагентные системы. Не дремлют и другие направления искусственного интеллекта, например распределенное представление знаний и решение задач в интернете: благодаря им в ближайшие несколько лет можно ждать революции в целом ряде областей человеческой деятельности.
Пятое поколение ЭВМ:ЭВМ пятого поколения — это ЭВМ будущего. Программа разработки, так называемого, пятого поколения ЭВМ была

Слайд 156. Персональный Компьютер современного типа

6. Персональный    Компьютер современного типа

Слайд 16Архитектура фон Неймана   Схематичное изображение машины фон Неймана. Архитектура фон Неймана — широко известный принцип совместного

хранения программ и данных в памяти компьютера. Вычислительные системы такого рода часто обозначают термином «Машина фон Неймана», однако, соответствие этих понятий не всегда однозначно. В общем случае, когда говорят об архитектуре фон Неймана (нем. von Neumann), подразумевают физическое отделение процессорного модуля от устройств хранения программ и данных. Наличие заданного набора исполняемых команд и программ было характерной чертой первых компьютерных систем. Сегодня подобный дизайн применяют с целью упрощения конструкции вычислительного устройства. Так, настольные калькуляторы, в принципе, являются устройствами с фиксированным набором выполняемых программ. Их можно использовать для математических расчётов, но невозможно применить для обработки текста и компьютерных игр, для просмотра графических изображений или видео. Изменение встроенной программы для такого рода устройств требует практически полной их переделки, и в большинстве случаев невозможно. Впрочем, перепрограммирование ранних компьютерных систем всё-таки выполнялось, однако требовало огромного объёма ручной работы по подготовке новой документации, пере коммутации и перестройки блоков и устройств и т. п. Всё изменила идея хранения компьютерных программ в общей памяти. Ко времени её появления использование архитектур, основанных на наборах исполняемых инструкций, и представление вычислительного процесса как процесса выполнения инструкций, записанных в программе, чрезвычайно увеличило гибкость вычислительных систем в плане обработки данных. Один и тот же подход к рассмотрению данных и инструкций сделал лёгкой задачу изменения самих программ. Принципы фон Неймана В 1946 году группа учёных во главе с Джоном фон Нейманом (Г.Голдстайн, А. Беркс) опубликовали статью «Предварительное рассмотрение логической конструкции Электронно-вычислительного устройства». В статье обосновывалось использование двоичной
Архитектура фон Неймана   Схематичное изображение машины фон Неймана. Архитектура фон Неймана — широко известный принцип совместного хранения программ и

Слайд 17системы для представления данных в ЭВМ (преимущественно для технической реализации, простота

выполнения арифметических и логических операций. До этого машины хранили данные в десятеричном виде)[1], выдвигалась идея использования программами общей памяти. Имя фон Неймана было достаточно широко известно в науке того времени, что отодвинуло на второй план его соавторов, и данные идеи получили название «Принципы фон Неймана». 1. Принцип программного управления. Программа состоит из набора команд, которые выполняются процессором друг за другом в определенной последовательности. 2. Принцип однородности памяти. Как программы, так и данные хранятся в одной и той же памяти (и кодируются в одной и той же системе счисления - чаще всего двоичной). Над командами можно выполнять такие же действия, как и над данными. 3. Принцип адресуемости памяти. Структурно основная память состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Компьютеры, построенные на этих принципах, относят к типу фоннеймановских. Компьютеры, построенные на принципах фон Неймана В середине 40-х проект компьютера, хранящего свои программы в общей памяти был разработан в Муровской школе электрических разработок (англ. The Moore School of Electrical Engineering) в Университете штата Пенсильвания (англангл. The University of Pennsylvania). Подход, описанный в этом документе, стал известен как архитектура фон Неймана, по имени единственного из названных авторов проекта Джона фон Неймана, хотя на самом деле авторство проекта было коллективным. Архитектура фон Неймана решала проблемы, свойственные компьютеру «Эниак», который создавался в то время, за счёт хранения программы компьютера в его собственной памяти. Информация о проекте стала доступна другим исследователям вскоре после того, как в 1946 году было объявлено о создании «Эниака». По плану предполагалось осуществить проект силами Муровской школы в машине «EDVAC», однако до 1953 года «EDVAC» не был запущен из-за технических трудностей в создании надёжной компьютерной памяти. Другие научно-исследовательские институты, получившие копии проекта, сумели решить эти проблемы гораздо раньше группы разработчиков из Муровской школы и реализовали их в собственных компьютерных системах. Первыми 5 компьютерами, в которых были реализованы основные особенности архитектуры фон Неймана, были: «Манчестерский Марк I». Прототип («Манчестерское дитя») Университет Манчестера (англ. The University of Manchester) Великобритания, 21 июня 1948 года; «EDSAC». Кембриджский университет (англ. The Cambridge University). Великобритания, 6 мая 1949 года; «BINAC». США, апрель или август 1949 года; «CSIR Mk 1». Австралия, ноябрь 1949 года; «SEAC». США, 9 мая 1950 года.
системы для представления данных в ЭВМ (преимущественно для технической реализации, простота выполнения арифметических и логических операций. До

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть