Слайд 1Металлы I – Б группы
Выполнила учитель химии, ВКК
МБОУ СОШ № 93
г.Воронежа
Пилюгина Раиса Николаевна
Слайд 3Медь» - от латинского «mеdаlinо»- рудник. Латинское название меди «cuprum» -
от названия острова Кипр, где в древности были древние рудники. Греческое название «халькос» - от главного города острова Эвбея в Эгейском море - порта Халькис. Вблизи него находилось небольшое месторождение меди, откуда ее впервые стали добывать древние греки. МЕДЬ химический элемент с атомным номером 29, атомная масса 63,546. Простое вещество медь — красивый розовато-красный пластичный металл. В периодической системе Менделеева медь расположена в четвертом периоде и входит в группу IВ, к которой относятся такие благородные металлы, как серебро и золото.
Слайд 4Нахождение в природе
В земной коре содержание меди составляет 0,01%, что позволяет
ей занимать лишь 23-е место среди всех элементов. Очень редко медь встречается в самородном виде (самый крупный самородок в 420 тонн найден в Северной Америке). Различных руд меди много, а вот богатых месторождений на земном шаре мало, к тому же медные руды добывают уже многие сотни лет, так что некоторые месторождения полностью исчерпаны. В морской воде содержится примерно 1·10-8 % меди. Медь. Кондопожский р-н, Карелия, Россия. Медь. Район п. Домбаровский, Ю. Урал, Оренбургская обл., Россия.
Слайд 5Физические свойства
Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой,
которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет. Наряду с осмием, цезием и золотом, медь — один из четырёх металлов, имеющих явную цветовую окраску, отличную от серой или серебристой у прочих металлов. Этот цветовой оттенок объясняется наличием электронных переходов между заполненной третьей и полупустой четвёртой атомными орбиталями: энергетическая разница между ними соответствует длине волны оранжевого света. Тот же механизм отвечает за характерный цвет золота.
Слайд 6Медь —металл, мягкий и ковкий, ее температура плавления 1083° С, обладает
высокой тепло и электропроводностью (занимает второе место по электропровод- ности среди металлов после серебра). Медь имеет относительно большой темпе- ратурный коэффициент сопротивления и в широком диапазоне температур слабо зависит от температуры. Медь является диамагнетиком. (Диамагне́тики — вещества, намагничивающиеся против направления внешнего магнитного поля. В отсутствие внешнего магнитного поля диамагнетики немагнитны.) Медь образует кубическую гранецентрированную решётку.
Слайд 7Получение
Медь получают из медных руд и минералов. Основные методы получения меди-пирометаллургия, гидрометаллургия и электролиз.
Пирометаллургический метод заключается в получении меди из сульфидных руд, (например CuFeS2). Гидрометаллургический метод заключается в растворении минералов меди в разбавленной серной кислоте или в растворе аммиака; из полученных растворов медь вытесняют металлическим железом.
Слайд 8Химические свойства
Степени окисления. В соединениях медь проявляет две степени окисления: +1
и +2. Первая из них неустойчива. Её соединения бесцветны. Более устойчива степень окисления +2, которая даёт соли синего и сине-зелёного цвета. В необычных условиях можно получить соединения со степенью окисления +3 и даже +5. Медь - малоактивный металл, в электрохимическом ряду напряжений она стоит правее водорода. Она не взаимодействует с водой, растворами щелочей, соляной и разбавленной серной кислотой. Однако в кислотах — сильных окислителях (например, азотной и концентрированной серной) — медь растворяется: Сu + 4НМО3 - Сu(NO3)2 + 2NO+ 2Н2О конц.
Слайд 9Медь обладает достаточно высокой стойкостью к коррозии. Однако во влажной атмосфере,
содержащей углекислый газ медь покрывается зеленоватым налетом основного карбоната меди: 2Сu + O2 + СO2 + Н2O = СU(ОН)2 • СuСО3 Является слабым восстановителем, не вступает в реакцию с водой и разбавленной соляной кислотой. Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии кислорода, цианидом калия. Окисляется концентрированными серной и азотной кислотами, «царской водкой», кислородом, галогенами, оксидами неметаллов. Вступает в реакцию при нагревании с галогеноводородами. Медь (II) образует устойчивые оксид СuО и гидроксид Си(ОН)2. Этот гидроксид амфотерен, хорошо растворяется в кислотах Сu(ОН)2 + 2НСl = СuСl2 + 2Н2О и в концентрированных щелочах. Соли меди (II) нашли широкое применение в народном хозяйстве. Особенно важным является медный купорос — кристаллогидрат сульфата меди (II) СuSО4 • 5Н2.
Слайд 10Применение
Теплообмен: полезное качество меди — высокая теплопроводность. Это позволяет применять её в
различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления, компьютерных кулерах, тепловых трубках.
В электротехнике: из-за низкого удельного сопротивления (уступает лишь серебру), медь широко применяется в электротехнике для изготовления силовых кабелей, проводов или других проводников.
Для производства труб: в связи с высокой механической прочностью и пригодностью для механической обработки, медные бесшовные трубы круглого сечения получили широкое применение для транспортировки жидкостей и газов: во внутренних системах водоснабжения, отопления, газоснабжения, системах кондиционирования и холодильных агрегатах.