SO — высота
SF — апофема
OF — радиус вписанной в основание окружности
Проанализируем объём какой пирамиды будет больше: EABC или SEBC?
*Объём пирамиды равен одной трети произведения площади её основания и высоты:
Если рассмотреть две полученные пирамиды и в обеих принять за основание грань ЕВС, то становится очевидно, то объём пирамиды АЕВС будет больше объёма пирамиды SEBC. Почему?
Расстояние от точки А до плоскости ЕВС больше чем расстояние от точки S. А это расстояние играет у нас роль высоты.
Итак, найдём объём пирамиды ЕАВС.
Объём исходной пирамиды нам дан, основание у пирамид SАВС и ЕАВС общее. Если мы установим соотношение высот, то без труда сможем определить объём.
Из отношения отрезков ES и AE следует, что АЕ равно две третьих ES. Высоты пирамид SАВС и ЕАВС находятся в такой же зависимости - высота пирамиды ЕАВС будет равна 2/3 высоты пирамиды SАВС.
Таким образом, если
То
Ответ: 10
Постоим пирамиду, обозначим вершины. Отметим на ребре AS точку Е, так чтобы AE была в два раза больше ES (в условии сказано, что ES относится к AE как 1 к 2), и построим указанную плоскость проходящую, через ребро АС и точку Е:
Объем указанного многогранника равен разности объемов исходного тетраэдра V0 и четырех равных тетраэдров, каждый из которых получается отсечением плоскостью, проходящей через середины рёбер, имеющих общую вершину:
Определим, чему равен объём отсеченного тетраэдра.
Отметим, что исходный тетраэдр и «отсечённый» тетраэдр являются подобными телами. Известно, что отношение объёмов подобных тел равно k3, где k - коэффициент подобия. В данном случае он равен 2 (так как все линейные размеры исходного тетраэдра в два раза больше соответствующих размеров отсечённого):
Вычислим объём отсечённого тетраэдра:
Таким образом, искомый объём будет равен:
Ответ: 100
Первый способ:
Искомая поверхность состоит из 8 равносторонних треугольников со стороной, вдвое меньшей ребра исходного тетраэдра. Поверхность исходного тетраэдра состоит из 16-ти таких треугольников (на каждой из 4 граней тетраэдра по 4 треугольника), поэтому искомая площадь равна половине площади поверхности данного тетраэдра и равна 60.
Второй способ:
Так как известна площадь поверхности тетраэдра, то мы можем найти его ребро, затем определить длину ребра многогранника и далее вычислить площадь его поверхности.
Площадь поверхности тетраэдра состоит из четырёх равных по площади правильных треугольников. Пусть сторона такого треугольника (ребро тетраэдра) равна а, тогда можем записать:
Данное решение алгебраическое и рациональным его назвать никак нельзя, представлено как альтернативный вариант.
Ответ: 60
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть