Треугольник – одна из основных фигур в планиметрии
Возможны следующие тройки элементов:
1. Если две стороны угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
2. Если сторона и прилежащие к ней углы одного треугольника соответственно равны стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.
3. Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.
4. Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники равны.
5. Если две стороны и угол лежащий не между ними одного треугольника соответственно равны двум сторонам и углу лежащему не между ними другого треугольника, то такие треугольники равны.
6. Если сторона и два угла не содержащие её одного треугольника соответственно равны стороне и двум углам не содержащим её другого треугольника, то такие треугольники равны
Первым трём соответствуют признаки равенства треугольников, которые учащиеся традиционно изучают в седьмом классе, а вот остальные следует проверить.
АВ < BC А1В1< В1С1
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть