учитель физики
МБОУ Владимировской СОШ
Давыдченко Евгения Сергеевна
Презентация по физике
Презентация по физике
3) Конденсатор в цепи переменного тока.
4) Катушка индуктивности в цепи переменного тока.
Переменный электрический ток
Стандартная частота промышленного переменного тока равна 50 Гц. Это означает, что на протяжении 1 с ток 50 раз идет в одну сторону и 50 раз — в противоположную. Частота 50 Гц принята для промышленного тока во многих странах мира. В США принята частота 60 Гц. Если напряжение на концах цепи меняется по гармоническому закону, то и напряженность электрического поля внутри проводников будет также меняться гармонически.
Переменное напряжение в гнездах розетки осветительной сети создается генераторами на электростанциях. Проволочную рамку, вращающуюся в постоянном однородном магнитном поле, можно рассматривать как простейшую модель генератора переменного тока. Поток магнитной индукции Ф, пронизывающий проволочную рамку площадью S, пропорционален косинусу угла а между нормалью к рамке и вектором магнитной индукции (рис. 4.9):
Ф = BScos а
При равномерном вращении рамки угол а увеличивается прямо пропорционально времени:
а=2Пnt , где n – частота вращения.Поэтому поток магнитной индукции меняется гармонически :
Ф = BS cos 2Пnt , Здесь 2Пn число колебаний магнитного потока за 2П с. Это ЦИКЛИЧЕСКАЯ ЧАСТОТА колебаний w=2Пn => Ф = BScoswt
Если к рамке подключить колебательный контур, то угловая скорость w вращения рамки определит частоту w колебаний значений ЭДС, напряжения на paзличныx участках цепи и силы тока.
Если напряжение меняется с циклической частотой , то и сила тока в цепи будет меняться с той же частотой. Но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае сила тока і в любой момент времени (мгновенное значение силы тока) определяется по формуле
Здесь Im - амплитуда силы тока, т. е. максимальное по модулю значение силы тока, а — разность (сдвиг) фаз между колебаниями силы тока и напряжения.
Сопротивление R называется активным, потому что при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от генератора. Эта энергия превращается во внутреннюю энергию проводников — они нагреваются. Будем считать, что напряжение на зажимах цепи меняется по гармоническому закону:
u = Um cos w t
В проводнике с активным сопротивлением колебания силы тока совпадают по фазе с колебаниями напряжения (рис. 4.17), а амплитуда силы тока определяется равенством
Мощность в цепи с резистором. В цепи переменного тока промышленной частоты (v = 50 Гц) сила тока и напряжение изменяются сравнительно быстро. Поэтому при прохождении тока по проводнику, например по нити электрической лампочки, количество выделенной энергии также будет быстро меняться со временем. Но этих быстрых изменений мы не замечаем.
Как правило, нам нужно бывает знать среднюю мощность тока на участке цепи за большой промежуток времени, включающий много периодов. Для этого достаточно найти среднюю мощность за один период. Под средней за период, мощностью переменного тока понимают отношение суммарной энергии, поступающей в цепь за период, к периоду.
Мощность в цепи постоянного тока на участке с сопротивлением R определяется формулой :
P = I2R. (4.18)
Поэтому мгновенная мощность в цепи переменного тока на участке, имеющем активное сопротивление R, определяется формулой :
P = i2R. (4.19)
Найдем среднее значение мощности за период. Для этого сначала преобразуем формулу (4.19), подставляя в нее выражение (4.16) для силы тока и используя известное из математики соотношение
Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.
Действующее значение переменного напряжения определяется аналогично действующему значению силы тока:
Как и при механических колебаниях, в случае электрических колебаний обычно нас не интересуют значения силы тока, напряжения и других величин в каждый момент времени. Важны общие характеристики колебаний, такие, как амплитуда, период, частота, действующие значения силы тока и напряжения, средняя мощность. Именно действующие значения силы тока и напряжения регистрируют амперметры и вольтметры переменного тока.
Кроме того, действующие значения удобнее мгновенных значений еще и потому, что именно они непосредственно определяют среднее значение мощности Р переменного тока:
P = I2R = UI.
Пусть у нас имеются источники постоянного и переменного напряжений, причем постоянное напряжение на зажимах источника равно действующему значению переменного напряжения. Цепь состоит из конденсатора и лампы накаливания (рис. 4.13), соединенных последовательно. При включении постоянного напряжения (переключатель повернут влево, цепь подключена к точкам АА') лампа не светится. Но при включении переменного напряжения (переключатель повернут вправо, цепь подключена к точкам ВВ') лампа загорается, если емкость конденсатора достаточно велика.
Установим, как меняется со временем сила тока в цепи, содержащей только конденсатор, если сопротивлением проводов и обкладок конденсатора можно пренебречь (рис. 4.14).
Напряжение на конденсаторе
Сила тока, представляющая собой производную заряда по времени, равна:
Следовательно, колебания силы тока опережают по фазе колебания напряжения на конденсаторе на
(рис. 4.15).
Величину Xc, обратную произведению
C
циклической частоты на электрическую емкость конденсатора, называют емкостным сопротивлением.
Действующее значение силы тока связано с действующим значением напряжения на конденсаторе точно так же, как связаны согласно закону Ома сила тока и напряжение для участка цепи постоянного тока.
Чем больше емкость конденсатора, тем больше ток перезарядки. Это легко обнаружить по увеличению накала лампы при увеличении емкости конденсатора.
В то время как сопротивление конденсатора постоянному току бесконечно велико, его сопротивление переменному току имеет конечное значение Xc. С увеличением емкости оно уменьшается. Уменьшается оно и с увеличением частоты
Сопротивление цепи с конденсатором обратно пропорционально произведению циклической частоты на электроемкость. Колебания силы тока опережают по фазе колебания напряжения на
Соберем цепь из катушки с большой индуктивностью и электрической лампы накаливания (рис. 4.16). С помощью переключателя можно подключить эту цепь либо к источнику постоянного напряжения, либо к источнику переменного напряжения. При этом постоянное напряжение и действующее значение переменного напряжения должны быть равны.
Опыт показывает, что лампа светится ярче при постоянном напряжении. Следовательно, действующее значение силы переменного тока в рассматриваемой цепи меньше силы постоянного тока.
Объясняется это различие явлением самоиндукции.
Если напряжение быстро меняется, то сила тока не будет успевать достигнуть тех значений, которые она приобрела бы с течением времени при постоянном напряжении.
Следовательно, максимальное значение силы переменного тока (его амплитуда) ограничивается индуктивностью цепи и будет тем меньше, чем больше индуктивность и чем больше частота приложенного напряжения.
Если сопротивление катушки равно нулю, то и напряженность электрического поля внутри проводника в любой момент времени должна быть равна нулю. Иначе сила тока, согласно закону Ома, была бы бесконечно большой. Равенство нулю напряженности поля оказывается возможным потому, что напряженность вихревого электрического поля
порождаемого переменным магнитным полем, в каждой точке равна по модулю и противоположна по направлению напряженности кулоновского поля
создаваемого в проводнике зарядами, расположенными на зажимах источника и в проводах цепи.
Из равенства
=
-
k
i
следует, что удельная работа вихревого поля (т. е. ЭДС самоиндукции еі) равна по модулю и противоположна по знаку удельной работе кулоновского поля. Учитывая, что удельная работа кулоновского поля равна напряжению на концах катушки, можно записать:
еі = -u.
При изменении силы тока по гармоническому закону :
i = Im sin
t
ЭДС самоиндукции равна:
eі = - Li' = - L
lm cos
t.
Так как u = -еі, то напряжение на концах катушки оказывается равным
или, что то же самое, колебания силы тока отстают по фазе от колебаний напряжения на (рис. 4.18)
Амплитуда силы тока в катушке равна:
и вместо амплитуд силы тока и напряжения использовать их действующие значения, то получим:
Величину XL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением.
Согласно формуле (4.35) действующее значение силы тока связано с действующим значением напряжения и индуктивным сопротивлением соотношением, подобным закону Ома для цепи постоянного тока.
Индуктивное сопротивление зависит от частоты
Постоянный ток вообще «не замечает» индуктивности катушки. При = 0
индуктивное сопротивление равно нулю (XL = 0).
Чем быстрее меняется напряжение, тем больше ЭДС самоиндукции и тем меньше амплитуда силы тока.
Катушка индуктивности оказывает сопротивление переменному току.
Это сопротивление, называемое индуктивным, равно произведению циклической частоты на индуктивность.
Колебания силы тока в цепи с индуктивностью отстают по фазе от колебаний напряжения на
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть