Нейтронные звёзды имеют очень малый размер — 10—20 км в диаметре, плотность вещества приближается к плотности атомного ядра (1016—1018 кг/м³). Массы большинства известных нейтронных звёзд близки к 1,4 массы Солнца (теоретически же допустимы нейтронные звёзды с массами от 0,1 до примерно 2,5 солнечных масс). Самая массивная нейтронная звезда из открытых Vela X-1 имеет массу 1,88 солнечных масс. Силы тяготения в нейтронных звёздах уравновешиваются давлением вырожденного нейтронного газа, максимальное значение массы нейтронной звезды задаётся пределом Оппенгеймера.
Нейтронные звёзды — одни из немногих астрономических объектов, которые были теоретически предсказаны до открытия наблюдателями. Ещё в 1934 году В. Бааде и Ф. Цвикки высказали предположение, что в результате взрыва сверхновой образуется нейтронная звезда. Но первое общепризнанное наблюдение нейтронной звезды состоялось только в 1968, с открытием пульсаров.
Фриц Цвикки
Магнитное поле на поверхности нейтронных звёзд достигает значения 1012—1013 Гс. (для сравнения — у Земли около 1 Гс), именно процессы в магнитосферах нейтронных звёзд ответственны за радиоизлучение пульсаров.
Нейтронные звезды
Пульсары
Изображение Крабовидной туманности в псевдоцвете (синий — рентгеновский, красный — оптический диапазон). В центре туманности — пульсар
Видео:
Белые карлики
Происхождение
Открытие Белых карликов
Парадокс плотности
Сравнительные размеры Солнце (справа) и двойной системы IK Пегаса компонент B - белый карлик с температурой поверхности 35,500 K (по центру) и компонент А - звезда спектрального типа A8 (слева)
Васи́лий Григо́рьевич Фесе́нков (1 (13) января 1889, Новочеркасск — 12 марта 1972, Москва) — советский астроном, один из основоположников астрофизики, академик АН СССР (1935), академик АН КазССР (1946)
Фридрих Вильгельм Бессель
22 июля 1784 — 17 марта 1846) — немецкий математик и астроном XIX века.
Бремен. Памятник Бесселю.
Следующим этапом в объяснении природы белых карликов стали работы Я. И. Френкеля и Чандрасекара. В 1928 г. Френкель указал, что для белых карликов должен существовать верхний предел массы, и в 1930 г. Чандрасекар в работе «Максимальная масса идеального белого карлика» показал, что белые карлики с массой выше 1,4 солнечных неустойчивы (предел Чандрасекара) и должны коллапсировать.
Водовороты газа и пыли в области формирования новой звезды, снятые космическим телескопом Hubble. Эта красотища с названием LH 95 расположена в “Большом Магеллановом Облаке”, она показывает нам области "низкой массы" - младенческие звезды, а так же несколько их более массивных соседей. Изображение получено в марте 2006 года с помощью камеры “Hubble Advanced Camera” телескопа Hubble.
Механизм вспышки
Типы «Новых» звезд
Интересные факты, прочее
Слева - массивная теряющая вещество звезда
Справа - звезда спектрального класса белый карлик. Поток газа устремляется к белому карлику и образует аккреционный диск вокруг него
Новые звёзды являются подклассом катаклизмических переменных. Выделяют классические новые с большим периодом между вспышками и повторные новые с относительно частой повторяемостью вспышек.
Na — быстрые новые
Nb — медленные новые
Nc — предельно медленные новые
NR — повторные новые
Новые имеют хорошие шансы быть использованными в качестве стандартных свеч. Пусть, к примеру, распределение её абсолютной звёздной величины бимодально, с основной вершиной в −7,5 и меньшей в −8,8. Кроме того, абсолютная звёздная величина новой остаётся приблизительно одинаковой (−5,5) около 15 дней после взрыва. Определение расстояний галактик и скоплений галактик при помощи новых дают такую же точность, как и при использовании цефеид.
Карл Шварцшильд (нем. Karl Schwarzschild) (9 октября 1873, Франкфурт-на-Майне — 11 мая 1916, Потсдам) — немецкий астроном и физик.
Одна из его работ по теории относительности содержала первые точные решения полевых уравнений общей теории относительности со сферической симметрией — так называемое внутренне решение Шварцишльда для невращающегося шарообразного тела из однородной жидкости и внешнее решение Шварцшильда для статического пустого пространства вокруг сферически-симметричного тела (второе сейчас именуют обычно просто решением Шварцшильда). Решение Шварцшильда было первым решением уравнений Эйнштейна с классической чёрной дырой. Поэтому несколько терминов из физки чёрных дыр получили его имя, например радиус Шварцшильда, Шварцшильдовы координаты и так далее.
Масса черных дыр показывает, что они являются сжатыми остатками звезд, по крайней мере, в 20 раз больших, чем Солнце. Явные кандидаты в черные дыры обнаружены пока лишь на орбите вокруг нормальной звезды. По мере того, как вещество из нормальной звезды падает к черной дыре, оно выдает заметное рентгеновское излучение до того, как исчезнет в черной дыре, чтобы никогда уже не возвратиться оттуда. Число этих страшных гравитационных малюток в нашем Млечном Пути оценивается в несколько десятков или сотен миллионов.
Как супермассивные черные дыры формируются, пока не понятно. Предполагают, что они могли сформироваться через прямой коллапс облака вещества в центре галактики, или через слияние черных дыр, или постепенным приростом окружающего газа из галактики, или комбинацией всего перечисленного выше. Их прирост мог бы зависеть от доступности окружающего газа, или от соседних черных дыр, которые могли бы захватываться при вращении галактики.
Иногда бывает, что две физически никак не связанные между собой звезды случайно проецируются на очень близкие друг к другу точки небесной сферы. Такие звёзды называются оптически-двойными — в противоположность «истинным», физически-двойным.
Двойные звёзды, компоненты которых активно взаимодействуют между собой, обмениваясь веществом называют тесными двойными звёздами или тесными двойными системами.
Изображение Переменной звезды Миры (омикрона Кита), сделанное космическим телескопом им. Хаббла в ультрафиолетовом диапазоне. На фотографии виден аккреционный "хвост", направленный от основного компонента - красного гиганта к компаньону - белому карлику
Физика сверхновых звезд
Место сверхновых во Вселенной
Наблюдение сверхновых звезд
Сверхновая звезда
По современным представлениям, термоядерный синтез приводит со временем к обогащению состава внутренних областей звезды тяжёлыми элементами. В процессе термоядерного синтеза и образования тяжёлых элементов звезда сжимается, а температура в её центре растёт. (Эффект отрицательной теплоёмкости гравитирующего невырожденного вещества.) Если масса звезды достаточно велика, то процесс термоядерного синтеза доходит до логического завершения с образованием ядер железа и никеля, а сжатие продолжается. При этом термоядерные реакции будут продолжаться только в некотором слое звезды вокруг центрального ядра — там, где ещё осталось невыгоревшее термоядерное топливо.
Физика сверхновых звезд
Сверхновые II типа
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть