Слайд 1Устный журнал в 10 классе
Учитель математики
Романова Г.В.
ТРИГОНОМЕТРИЯ
AC= 0,5 BC
Слайд 2Тригонометрия – слово греческое и в буквальном переводе означает измерение треугольников
(τριγωνον - треугольник, а μετρεω- измеряю). Возникновение тригонометрии связано с землемерением, астрономией и строительным делом. Потребность в решении треугольников раньше всего возникла в астрономии: и в течении долгого времени тригонометрия развивалась изучалась как один из отделов астрономии. Насколько известно: способы решения треугольников (сферических) впервые были письменно изложены греческим астрономом Гиппархом в середине 2 века до н.э.
Слайд 3Наивысшими достижениями греческая тригонометрия обязана астроному Птоломею (2 век н.э.), создателю
геоцентрической системы мира, господствовавшей до Коперника. Греческие астрономы не знали синусов, косинусов и тангенсов. Вместо таблиц этих величин они употребляли таблицы: позволяющие отыскать хорду окружности по стягиваемой дуге.
Слайд 4Значительный вклад в развитие тригонометрии внесли арабские ученые Аль-Батани (850-929) и
Абу-ль-Вафа, Мухамед-бен Мухамед (940-998), который составил таблицы синусов и тангенсов через 10’ с точностью до 1/604. Теорему синусов уже знали индийский ученый Бхаскара (р. 1114, год смерти неизвестен) и азербайджанский астроном и математик Насиреддин Туси Мухамед (1201-1274).
Слайд 5 Южно-индийские математики в 16 веке добились больших успехов в области
суммирования бесконечных числовых рядов. По-видимому, они занимались этими исследованиями, когда искали способы вычисления более точных значений числа П. Нилаканта словесно приводит правила разложения арктангенса в бесконечный степенной ряд.
А в анонимном трактате «Каранападдхати»(«Техника вычислений») даны правила разложения синуса и косинуса в бесконечные степенные ряды. Нужно сказать, что в Европе к подобным результатам подошли лишь в 17-18 веках. Так, ряды для синуса и косинуса вывел И.Ньютон около 1666 г., а ряд арктангенса был найден Дж Грегори в 1671 г. и Г.В.Лейбницем в 1673 г.
sin a + cos a = 1,
sin a = cos (90° - a)
sin (a + B)= sin a * cos B + cos a * sin B.
2 2
Значительные высоты достигла тригонометрия и у индийских средневековых астрономов. Главным достижением индийских астрономов стала замена хорд синусами, что позволило вводить различные функции, связанные со сторонами и углами прямоугольного треугольника. Таким образом в Индии было положено начало тригонометрии как учению о тригонометрических величинах.
Индийские ученые пользовались различными тригонометрическими соотношениями, в том числе и теми, которые в современной форме выражается как
Слайд 7 В 8 в ученые стран Ближнего и Среднего Востока познакомились
с трудами индийских математиков и астрономов и перевели их на арабский язык. В середине 9 века среднеазиатский ученый аль-Хорезми написал сочинение «Об индийском счете». После того как арабские трактаты были переведены на латынь, многие идеи индийских математиков стали достоянием европейской, а затем и мировой науки.
Слайд 8Длительную историю имеет понятие синус. Фактически различные отношения отрезков треугольника и
окружности (а по существу, и тригонометрические функции) встречаются уже в III веке до н.э. в работах великих математиков Древней Греции – Евклида, Архимеда, Апполония Пергского. В римский период эти отношения достаточно систематично исследовались Менелаем (I век н.э.), хотя и не приобрели специального названия. Современный синус α, например, изучался как полухорда, на которую опирается центральный угол величиной α, или как хорда удвоенной дуги
А
1
А
О
М
R
sin
cos
Lim sin x
_____
x
x>0
=1
Слайд 9
Слово косинус намного моложе. Косинус – это сокращение латинского выражения completely
sinus, т. е. “дополнительный синус” (или иначе “синус дополнительной дуги”; cosα = sin( 90° - α)).
Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс) введен в X веке арабским математиком Абу-ль-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты лишь в XIV веке немецким математиком, астрономом Регимонтаном (1467 г.).
Слайд 11В IV-V веках появился уже специальный термин в трудах по астрономии
великого индийского учёного Ариабхаты, именем которого назван первый индийский спутник Земли. Отрезок АМ (рис. 1) он назвал ардхаджива (ардха – половина, джива – тетива лука, которую напоминает хорда).
Позднее появилось более краткое название джива. Арабскими математиками в IX веке это слово было заменено на арабское слово джайб (выпуклость). При переводе арабских математических текстов в веке оно было заменено латинским синус (sinus – изгиб, кривизна).
Слайд 12Дальнейшее развитие тригонометрия получила в трудах выдающихся астрономов Николая Коперника (1473-1543)
– творца гелиоцентрической системы мира, Тихо Браге (1546-1601) и Иогана Кеплера (1571-1630), а также в работах математика Франсуа Виета (1540-1603), который полностью решил задачу об определениях всех элементов плоского или сферического треугольника по трем данным.
Слайд 13Аналитическая теория тригонометрических функций в основном была создана выдающимся математиком XVIII
веке Леонардом Эйлером (1707-1783) членом Петербургской Академии наук. Громадное научное наследие Эйлера включает блестящие результаты, относящиеся к математическому анализу, геометрии, теории чисел, механике и другим приложениям математики. Именно Эйлер первым ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. После Эйлера тригонометрия приобрела форму исчисления: различные факты стали доказываться путем формального применения формул тригонометрии, доказательства стали намного компактнее проще,
Слайд 14Пожалуй, наибольшие стимулы к развитию тригонометрии возникали в связи с решением
задач астрономии, что представляло большой практический интерес (например, для решения задач определения местонахождения судна, предсказания затемнения и т. д.). Астрономов интересовали соотношения между сторонами и углами сферических треугольников. И надо заметить, что математики древности удачно справлялись с поставленными задачами.
Начиная с XVII в., тригонометрические
функции начали применять
к решению уравнений,
задач механики, оптики,
электричества, радиотехники,