Исследование вероятностных закономерностей массовых однородных явлений составляет предмет теории вероятностей.
Основным интуитивным понятием классической теории вероятностей является случайное событие.
N – число всех исходов испытания
М – число исходов благоприятствующих событию А
Свойство вероятности:
1) Вероятность достоверного события равна 1
2) Вероятность невозможного события равна 0
3) Вероятность события А удовлетворяет двойному неравенству
Решение: Обозначим через А событие «команда Италии в третьей группе». Тогда количество благоприятных событий m = 3 (три карточки с номером 3), а общее число равновозможных событий n = 15 (15 карточек).
Ответ: 0,2.
Решение: В каждой группе 7 человек. Будем считать, что Митя уже занял место в одной группе. Обозначим через А событие «Петя оказался в той же группе». Для Пети останется n = 20 свободных мест, из них m = 6 мест.
Ответ: 0,3.
Ответ: 0,1.
Ответ: 0,225.
Решение: Первый способ. Обозначим через А событие «кофе закончится в первом автомате», через В событие «кофе закончится во втором автомате». Событие С «кофе закончится хотя бы в одном автомате» является их суммой С = А + В.
Два события называются независимыми, если появление любого из них не изменяет вероятность появления другого:
Вероятность совместного появления двух независимых событий равна произведению их вероятностей:
Ответ: 0,1.
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть