Презентация, доклад к уроку по информатике на тему: Алгебра высказываний (8-9 классы)

Содержание

Простые высказывания обозначают заглавными латинскими буквами A, B, C…X, Y, Z и называют логическими переменнымиЗначения высказыванийИСТИНА или ЛОЖЬ обозначаютсоответственно цифрами 1 и 0и называют логическими величинамиСоставные высказывания называются логическими выражениями и включаютв себя логические переменные,операции логики

Слайд 1Логические величины, операции, выражения
Алгебра высказываний

Логические величины, операции, выраженияАлгебра высказываний

Слайд 2Простые высказывания обозначают
заглавными латинскими буквами
A, B, C…X, Y, Z

и называют
логическими переменными

Значения высказываний
ИСТИНА или ЛОЖЬ обозначают
соответственно цифрами 1 и 0
и называют логическими величинами

Составные высказывания называются
логическими выражениями и включают
в себя логические переменные,
операции логики и скобки для изменения
порядка действий операций

Простые высказывания обозначают заглавными латинскими буквами A, B, C…X, Y, Z и называют логическими переменнымиЗначения высказыванийИСТИНА или

Слайд 3Примеры:
Рассмотрим следующие высказывания:
A = (7 > 3)
B = (7 = 3)
C

= (7 ≠ 3)
D = (B ۸ C) = ((7 = 3) ۸ (7 ≠ 3))

На языке алгебры логики эти высказывания можно записать так:
A = ИСТИНА = 1
B = ЛОЖЬ = 0
C = ИСТИНА = 1
D = ЛОЖЬ = 0

Примеры:Рассмотрим следующие высказывания:A = (7 > 3)B = (7 = 3)C = (7 ≠ 3)D = (B

Слайд 4Основные логические операции
Логическая операция КОНЪЮНКЦИЯ
(логическое умножение)
Ставит в соответствие каждым двум

простым высказываниям составное высказывание, являющееся истинным тогда и только тогда, когда оба исходных высказываний истинны.
Основные логические операцииЛогическая операция  КОНЪЮНКЦИЯ(логическое умножение)Ставит в соответствие каждым двум простым высказываниям составное высказывание, являющееся истинным

Слайд 5КОНЪЮНКЦИЯ – логическое умножение
Объединение двух или нескольких высказываний в одно с

помощью союза «И»;
В алгебре логики знак & (амперсенд);
В программировании and или ^;
Конъюнкция – двухместная операция, записывается
А^В; F=A&B;

КОНЪЮНКЦИЯ – логическое умножениеОбъединение двух или нескольких высказываний в одно с помощью союза «И»;В алгебре логики знак

Слайд 6КОНЪЮНКЦИЯ
ЛОГИЧЕСКОЕ УМНОЖЕНИЕ
ОПРЕДЕЛЯЕТ СОЕДИНЕНИЕ ДВУХ ВЫСКАЗЫВАНИЙ С ПОМОЩЬЮ СОЮЗА
И
В прямоугольнике противоположные стороны

равны и параллельны

В прямоугольнике противоположные стороны равны и пересекаются

1

0

&

^

КОНЪЮНКЦИЯЛОГИЧЕСКОЕ УМНОЖЕНИЕОПРЕДЕЛЯЕТ СОЕДИНЕНИЕ ДВУХ ВЫСКАЗЫВАНИЙ С ПОМОЩЬЮ СОЮЗАИВ прямоугольнике противоположные стороны равны и параллельныВ прямоугольнике противоположные стороны

Слайд 7Значение такого выражения будет ЛОЖЬ, если хотя бы значение одного из

высказываний ЛОЖЬ.
Пример:
Число 6 делится на 2, и число 6 делится на 3;
Число 6 делится на 2= А;
Число 6 делится на 3= В;
F=A&B=1 (истина)

Значение такого выражения будет ЛОЖЬ, если хотя бы значение одного из высказываний ЛОЖЬ.

Слайд 8ТАБЛИЦА ИСТИННОСТИ
Значения логической функции можно определить с помощью таблицы истинности, которая

показывает какие значения принимает логическая функция при всех возможных наборах её аргументов.
ТАБЛИЦА ИСТИННОСТИЗначения логической функции можно определить с помощью таблицы истинности, которая показывает какие значения принимает логическая функция

Слайд 9Построим таблицу истинности

Построим таблицу истинности

Слайд 10Ленинград расположен на Неве и 2 + 3 = 5
7 –

простое число и 9 – простое число
2 * 2 = 4 и 2 * 2 ≤ 5 и 2 * 2 ≥ 4
Москва – столица России и Екатеринбург – столица Сибири
Книга – источник информации и 5 не больше 8
Девочки обычно любят играть в куклы и Не любая машина - автомобиль
Все гуси – птицы и Все игрушки - машины

Ответ: истинными высказываниями являются: 1, 3, 5, 6

Определить значения истинности следующих высказываний:

Ленинград расположен на Неве и 2 + 3 = 57 – простое число и 9 – простое

Слайд 11ДИЗЪЮНКЦИЯ – логическое сложение
Объединение двух или нескольких высказываний в одно с

помощью союза «ИЛИ»;
В алгебре логики знак ; +;
В программировании OR;
Дизъюнкция – двухместная операция, записывается
А В;

^

^

ДИЗЪЮНКЦИЯ – логическое сложениеОбъединение двух или нескольких высказываний в одно с помощью союза «ИЛИ»;В алгебре логики знак

Слайд 12Значение такого выражения будет ИСТИНА, если хотя бы одно значение ИСТИНО.

Значение такого выражения будет ИСТИНА, если хотя бы одно значение ИСТИНО.

Слайд 13Дизъюнкция - логическая операция, которая каждым двум высказываниям ставит в соответствие

новое высказывание, являющееся ложным тогда и только тогда, когда оба исходных высказывания ложны.
Другое название: логическое сложение.
Обозначения: V, |, ИЛИ, +.

Логические операции

Таблица истинности:

Графическое представление

A

B

АVВ

Дизъюнкция - логическая операция, которая каждым двум высказываниям ставит в соответствие новое высказывание, являющееся ложным тогда и

Слайд 147 – простое число или 9 – простое число
Число 2 четное

или Это простое число
2 * 2 = 4 или Белые медведи живут в Африке
Каша – вкусное блюдо или Математика – интересный предмет
Луна – спутник Марса или Луна – спутник Земли
Сегодня плохая погода или Кислород – вода
Microsoft Word – текстовый редактор или Paint – графический редактор

Ответ: истинными высказываниями являются: 1, 2, 3, 5, 7

Определить значения истинности следующих высказываний:

7 – простое число или 9 – простое числоЧисло 2 четное или Это простое число2 * 2

Слайд 15РЕШИМ ЗАДАЧИ
Марина и Оля старше Светы.
Половина класса изучает английский или немецкий

язык.
В кабинете есть учебники и справочники.
Слова в этом предложении начинаются на букву Ч или на букву А.
Часть туристов любит чай или молоко.

Часть туристов любит чай и остальная часть туристов любит молоко.
Синий кубик меньше красного и зеленого кубиков.
Х = 3 и Х > 2

РЕШИМ ЗАДАЧИМарина и Оля старше Светы.Половина класса изучает английский или немецкий язык.В кабинете есть учебники и справочники.Слова

Слайд 16ИНВЕРСИЯ – логическое отрицание
Присоединение частицы «НЕ» к высказыванию, называется операцией логического

отрицания или инверсией;
В естественном языке соответствует словам неверно, что…; частица НЕ;
Обозначение Ā;
На языке программирования Not
Отрицание – (унарная) одноместная операция
ИНВЕРСИЯ – логическое отрицаниеПрисоединение частицы «НЕ» к высказыванию, называется операцией логического отрицания или инверсией;В естественном языке соответствует

Слайд 17Инверсия - логическая операция, которая каждому высказыванию ставит в соответствие новое

высказывание, значение которого противоположно исходному.
Другое название: логическое отрицание.
Обозначения: НЕ, ¬ , ¯ .

Логические операции имеют следующий приоритет:
инверсия, конъюнкция, дизъюнкция.

Логические операции

Таблица истинности:

Графическое представление

A

Ā

Инверсия - логическая операция, которая каждому высказыванию ставит в соответствие новое высказывание, значение которого противоположно исходному.Другое название:

Слайд 18ОТРИЦАНИЕ (ИНВЕРСИЯ)
А - «На улице идет дождь»
Тогда ¬А -

А -

«На улице нет дождя»

ОТРИЦАНИЕ (ИНВЕРСИЯ)А - «На улице идет дождь»Тогда  ¬А -       А

Слайд 19Логическое отрицание делает истинное высказывание ложным и, наоборот, ложное истинным


Логическое отрицание делает истинное высказывание ложным и, наоборот, ложное истинным

Слайд 20Последовательность выполнения операций в логических формулах определяется старшинством операций. В порядке

убывания старшинства, логические операции расположены так:
отрицание, конъюнкция, дизъюнкция.
Кроме того, на порядок операции влияют скобки, которые можно использовать в логических формулах.
Последовательность выполнения операций в логических формулах определяется старшинством операций. В порядке убывания старшинства, логические операции расположены так:отрицание,

Слайд 21определите, в каком порядке необходимо вычислять значение логического выражения:
¬ А &

¬ B
A & (B & C)
(A & B) ν (C & ¬ D)
A ν ¬ D ν B
A ^ B ^ ¬ A

РЕШИМ ЗАДАЧИ

определите, в каком порядке необходимо вычислять значение логического выражения:¬ А & ¬ B A & (B &

Слайд 22Выделите в составных высказываниях простые. Запишите с помощью логических операций каждое

составное высказывание

Число 376 чётное и трёхзначное.
Неверно, что Солнце движется вокруг Земли

Выделите в составных высказываниях простые. Запишите с помощью логических операций каждое составное высказываниеЧисло 376 чётное и трёхзначное.Неверно,

Слайд 23Найти значения логических выражений
(1v1)v(1v0);
(0v1)v(1v0);
1&(1&1)&1;
((1&0)&(1&1))&(0v1);
((1&1)v0)&(0v1)

Найти значения логических выражений(1v1)v(1v0);(0v1)v(1v0);1&(1&1)&1;((1&0)&(1&1))&(0v1);((1&1)v0)&(0v1)

Слайд 24Даны два простых высказывания: A = {2*2 = 4}, B = {2*2

=5}.

Какие из составных высказываний истины:
а) Ā ; б) ;
в) A & B; г) A v B

Даны два простых высказывания: A = {2*2 = 4}, B = {2*2 =5}.Какие из составных высказываний истины:а)

Слайд 25Пусть А = «На Web-странице встречается слово "крейсер"», В = «На

Web-странице встречается слово "линкор"».
В некотором сегменте сети Интернет 5 000 000 Web-страниц. В нём высказывание А истинно для 4800 страниц, высказывание В - для 4500 страниц, а высказывание АVВ - для 7000 страниц.
Для какого количества Web-страниц в этом случае будут истинны следующие выражения и высказывание?
а) НЕ (А ИЛИ В);
б) А & B;
в) На Web-странице встречается слово "крейсер" И НЕ встречается слово "линкор".

Решаем задачу

Пусть А = «На Web-странице встречается слово

Слайд 265000000 – 7000 = 4 993 000 Web-страниц НЕ (А ИЛИ

В)

A = 4800, B = 4500.
4800 + 4500 = 9300

4800 – 2300 = 2500 Web-страниц

Представим условие задачи графически:

На 2500 Web-страницах встречается слово "крейсер" И НЕ встречается слово "линкор".

5 000 000

7 000

НЕ (А ИЛИ В)

Сегмент Web-страниц

A

B

A&B

9300 – 7000 = 2300 Web-страниц A&B

A

И

А ИЛИ В

5000000 – 7000 = 4 993 000 Web-страниц НЕ (А ИЛИ В) A = 4800, B =

Слайд 27Домашнее задание
§1.3; задание №10 к параграфу;
РТ № 53-56.

Домашнее задание§1.3; задание №10 к параграфу; РТ  № 53-56.

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть