Презентация, доклад на тему История развития вычислительной техники

Содержание

Вычисления в доэлектронную эпохуЭВМ первого поколения ЭВМ второго поколенияЭВМ третьего поколенияПерсональные компьютеры Современные супер-ЭВМ

Слайд 1


Слайд 2Вычисления в доэлектронную эпоху
ЭВМ первого поколения
ЭВМ второго поколения
ЭВМ третьего поколения
Персональные

компьютеры
Современные супер-ЭВМ

Вычисления в доэлектронную эпохуЭВМ первого поколения ЭВМ второго поколенияЭВМ третьего поколенияПерсональные компьютеры Современные супер-ЭВМ

Слайд 3Вычисления в доэлектронную эпоху
Потребность счета предметов у человека

возникла еще в доисторические времена. Древнейший метод счета предметов заключался в сопоставлении предметов некоторой группы (например, животных) с предметами другой группы, играющей роль счетного эталона. У большинства народов первым таким эталоном были пальцы (счет на пальцах).

Расширяющиеся потребности в счете заставили людей употреблять другие счетные эталоны (зарубки на палочке, узлы на веревке и т. д.).

Вычисления в доэлектронную эпоху  Потребность счета предметов у человека возникла еще в доисторические времена. Древнейший метод

Слайд 4 Каждый школьник хорошо знаком со счетными палочками, которые использовались

в качестве счетного эталона в первом классе.

В древнем мире при счете больших количеств предметов для обозначения определенного их количества (у большинства народов — десяти) стали применять новый знак, например зарубку на другой палочке. Первым вычислительным устройством, в котором стал применяться этот метод, стал абак.

Каждый школьник хорошо знаком со счетными палочками, которые использовались в качестве счетного эталона в первом

Слайд 5Вычисления в доэлектронную эпоху
Древнегреческий абак представлял собой

посыпанную морским песком дощечку. На песке проводились бороздки, на которых камешками обозначались числа. Одна бороздка соответствовала единицам, другая — десяткам и т. д. Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камешек в следующий разряд. Римляне усовершенствовали абак, перейдя от песка и камешков к мраморным доскам с выточенными желобками и мраморными шариками
Вычисления в доэлектронную эпоху   Древнегреческий абак представлял собой посыпанную морским песком дощечку. На песке проводились

Слайд 6Вычисления в доэлектронную эпоху
По мере усложнения хозяйственной деятельности

и социальных отношений (денежных расчетов, задач измерений расстояний, времени, площадей и т. д.) возникла потребность в арифметических вычислениях.
Для выполнения простейших арифметических операций (сложения и вычитания) стали использовать абак, а по прошествии веков — счеты.
В России счеты появились в XVI веке
Вычисления в доэлектронную эпоху   По мере усложнения хозяйственной деятельности и социальных отношений (денежных расчетов, задач

Слайд 7Блез Паскаль
В 1642 году (в 19 лет) Паскаль начал создание своей суммирующей машины«паскалины», в

этом, по его собственному признанию, ему помогли знания, полученные в ранние годы. Машина Паскаля выглядела как ящик, наполненный многочисленными связанными друг с другом шестерёнками. Складываемые либо вычитаемые числа вводились соответствующим поворотом колёс, принцип работы основывался на счёте оборотов. Так как успех в осуществлении замысла зависел от того, насколько точно ремесленники воспроизводили размеры и пропорции деталей машины,
Блез ПаскальВ 1642 году (в 19 лет) Паскаль начал создание своей суммирующей машины«паскалины», в этом, по его собственному признанию, ему

Слайд 8Паскаль

машина Паскаля
Паскаль            машина Паскаля

Слайд 9Готфрид Вильгельм Лейбниц
- немецкий философ, математик, логик, физик, изобретатель, богослов, историк,

юрист, языковед, дипломат, чьи теоретические работы и практические изобретения в немалой степени повлияли на современную философию и науку. Основал Берлинскую Академию наук и был первым ее президентом.
Родился в Лейпциге в 1646 г., 1 июля. Его отцом был профессор университета, известный юрист, матерью - профессорская дочь, и во многом это предопределило будущую судьбу их сына. После отца, который умер, когда Готфриду было 6 лет, осталась огромная библиотека, в которой сын проводил дни напролет. Одаренность его была видна с детских лет. Мать определила его в лучшую в городе школу, а в 14 или 15 лет он уже был студентом Лейпцигского университета. 1673
Готфрид Вильгельм Лейбниц- немецкий философ, математик, логик, физик, изобретатель, богослов, историк, юрист, языковед, дипломат, чьи теоретические работы

Слайд 10Лейбниц арифмометр

Лейбниц         арифмометр

Слайд 11Вычисления в доэлектронную эпоху
В середине XIX века (1933г)

английский математик Чарльз Бэббидж выдвинул идею создания программно управляемой счетной машины, имеющей арифметическое устройство, устройство управления, а также устройства ввода и печати.

Чарльз Бэббидж. Charles Babbage. (26.12.1791 - 18.10.1871)

Вычисления в доэлектронную эпоху  В середине XIX века (1933г) английский математик Чарльз Бэббидж выдвинул идею создания

Слайд 12Вычисления в доэлектронную эпоху
Аналитическую машину Бэббиджа (прообраз современных

компьютеров) по сохранившимся описаниям и чертежам построили энтузиасты из Лондонского музея науки. Аналитическая машина состоит из четырех тысяч стальных деталей и весит три тонны.
Вычисления в доэлектронную эпоху  Аналитическую машину Бэббиджа (прообраз современных компьютеров) по сохранившимся описаниям и чертежам построили

Слайд 13Ада Лавлейс
 Ада Лавлейс  — математик. Известна прежде всего созданием описания вычислительной машины, проект

которой был разработан Чарльзом Бэббиджем. Составила первую в мире программу (для этой машины). Ввела в употребление термины «цикл» и «рабочая ячейка», считается первым программистом в истории.

Ада Лавлейс Ада Лавлейс  — математик. Известна прежде всего созданием описания вычислительной машины, проект которой был разработан Чарльзом Бэббиджем. Составила первую

Слайд 14В 40-е годы XX века начались работы по созданию первых электронно-вычислительных

машин, в которых на смену механическим деталям пришли электронные лампы. ЭВМ первого поколения требовали для своего размещения больших залов, так как в них использовались десятки тысяч электронных ламп. Такие ЭВМ создавались в единичных экземплярах, стоили очень дорого и устанавливались в крупнейших научно-исследовательских центрах.
В 40-е годы XX века начались работы по созданию первых электронно-вычислительных машин, в которых на смену механическим

Слайд 15ЭВМ первого поколения
В 1945 году в США был построен ENIAC (Electronic

Numerical Integrator and Computer - электронный числовой интегратор и калькулятор), а в 1950 году в СССР была создана МЭСМ (Малая Электронная Счетная Машина)
ЭВМ первого поколенияВ 1945 году в США был построен ENIAC (Electronic Numerical Integrator and Computer - электронный

Слайд 16ЭВМ первого поколения
ЭВМ первого поколения могли выполнять вычисления

со скоростью несколько тысяч операций в секунду, последовательность выполнения которых задавалась программами. Программы писались на машинном языке, алфавит которого состоял из двух знаков: 1 и 0.
Программы вводились в ЭВМ с помощью перфокарт или перфолент, причем наличие отверстия на перфокарте соответствовало знаку 1, а его отсутствие – знаку 0.
Результаты вычислений выводились с помощью печатающих устройств в форме длинных последовательностей нулей и единиц. Писать программы на машинном языке и расшифровывать результаты вычислений могли только квалифицированные программисты, понимавшие язык первых ЭВМ.
ЭВМ первого поколения   ЭВМ первого поколения могли выполнять вычисления со скоростью несколько тысяч операций в

Слайд 17ЭВМ второго поколения
В 60-е годы XX века были созданы ЭВМ второго

поколения, основанные на новой элементной базе — транзисторах, которые имеют в десятки и сотни раз меньшие размеры и массу, более высокую надежность и потребляет значительно меньшую электрическую мощность, чем электронные лампы. Такие ЭВМ производились малыми сериями и устанавливались в крупных научно-исследовательских центрах и ведущих высших учебных заведениях.
ЭВМ второго поколения	В 60-е годы XX века были созданы ЭВМ второго поколения, основанные на новой элементной базе

Слайд 18ЭВМ второго поколения
В СССР в 1967 году вступила в строй наиболее

мощная в Европе ЭВМ второго поколения БЭСМ-6 (Большая Электронная Счетная Машина), которая могла выполнять 1 миллион операций в секунду.
ЭВМ второго поколения	В СССР в 1967 году вступила в строй наиболее мощная в Европе ЭВМ второго поколения

Слайд 19ЭВМ второго поколения
В БЭСМ-6 использовалось 260 тысяч транзисторов, устройства внешней памяти

на магнитных лентах для хранения программ и данных, а также алфавитно-цифровые печатающие устройства для вывода результатов вычислений.
Работа программистов по разработке программ существенно упростилась, так как стала проводиться с использованием языков программирования высокого уровня (Алгол, Бейсик и др.).
ЭВМ второго поколения	В БЭСМ-6 использовалось 260 тысяч транзисторов, устройства внешней памяти на магнитных лентах для хранения программ

Слайд 20ЭВМ третьего поколения
Начиная с 70-х годов прошлого века, в качестве элементной

базы ЭВМ третьего поколения стали использовать интегральные схемы. В интегральной схеме (маленькой полупроводниковой пластине) могут быть плотно упакованы тысячи транзисторов, каждый из которых имеет размеры, сравнимые с толщиной человеческого волоса.
ЭВМ третьего поколения	Начиная с 70-х годов прошлого века, в качестве элементной базы ЭВМ третьего поколения стали использовать

Слайд 21ЭВМ третьего поколения
ЭВМ на базе интегральных схем стали гораздо более компактными,

быстродействующими и дешевыми. Такие мини-ЭВМ производились большими сериями и были доступными для большинства научных институтов и высших учебных заведений.
ЭВМ третьего поколенияЭВМ на базе интегральных схем стали гораздо более компактными, быстродействующими и дешевыми. Такие мини-ЭВМ производились

Слайд 22Персональные компьютеры
Развитие высоких технологий привело к созданию больших интегральных схем

— БИС, включающих десятки тысяч транзисторов. Это позволило приступить к выпуску компактных персональных компьютеров, доступных для массового пользователя.
Персональные компьютеры Развитие высоких технологий привело к созданию больших интегральных схем — БИС, включающих десятки тысяч транзисторов.

Слайд 23Персональные компьютеры
Первым персональным компьютером был Аррle II («дедушка» современных компьютеров

Маcintosh), созданный в 1977 году. В 1982 году фирма IBM приступила к изготовлению персональных компьютеров IВМ РС («дедушек» современных IВМ-совместимых компьютеров).
Персональные компьютеры 	Первым персональным компьютером был Аррle II («дедушка» современных компьютеров Маcintosh), созданный в 1977 году. В

Слайд 24Персональные компьютеры
Современные персональные компьютеры компактны и обладают в тысячи раз

большим быстродействием по сравнению с первыми персональными компьютерами (могут выполнять несколько миллиардов операций в секунду). Ежегодно в мире производится почти 200 миллионов компьютеров, доступных по цене для массового потребителя.
Персональные компьютеры могут быть различного конструктивного исполнения: настольные, портативные (ноутбуки) и карманные (наладонники).
Персональные компьютеры Современные персональные компьютеры компактны и обладают в тысячи раз большим быстродействием по сравнению с первыми

Слайд 25Это многопроцессорные комплексы, которые позволяют добиться очень высокой производительности и могут

применяться для расчетов в реальном времени в метеорологии, военном деле, науке и т. д.
Это многопроцессорные комплексы, которые позволяют добиться очень высокой производительности и могут применяться для расчетов в реальном времени

Слайд 26Почему современные персональные компьютеры в сотни раз меньше, но при этом

в сотни тысяч раз быстрее ЭВМ первого поколения?
Почему современные персональные компьютеры доступны для массового потребителя?
Почему современные персональные компьютеры в сотни раз меньше, но при этом в сотни тысяч раз быстрее ЭВМ

Слайд 27ФИЗМИНУТКА

ФИЗМИНУТКА

Слайд 28Практическая работа
Найдите в сети Интернет информацию и затем заполните таблицу

в тетради

Практическая работаНайдите в сети Интернет информацию и затем заполните таблицу  в тетради

Слайд 29Таблица № 2

Таблица № 2

Слайд 30Закрепление урока
1.Первые счеты (абак) 5000-3000 лет до н.э.
2. 1642г. Машина Паскаля


3.1673г. Арифмометр (Лейбниц)
4.1833г. Аналитическая машина Бэббиджа
5.1843 написана первая программа
6.1946г. Создана первая ЭВМ – ENIAC
7. 1 поколение ЭВМ (1946-1958) (электронные лампы)
8. 2 поколение (1958-1964) (полупроводники - транзисторы)
9. 3 поколение (1964-1972) (интегральные схемы)
10. 4 поколение (1972) это сегодняшнее поколение (большие интеграл.схемы)
11. 5 поколение – это недалекое будущее

Закрепление урока1.Первые счеты (абак) 5000-3000 лет до н.э.2. 1642г. Машина Паскаля 3.1673г. Арифмометр (Лейбниц)4.1833г. Аналитическая машина Бэббиджа5.1843

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть