Презентация, доклад на тему Равнобедренный треугольник. МАтериалы для ученика.

Дано: ∆АВСАВ = АС = ВСВАСРавносторонний треугольникОпределение Треугольник, все стороны которого равны называется равносторонним.

Слайд 1Дано: ∆АВС
АВ = АС
АВ, АС – боковые стороны ∆АВС
ВС

– основание ∆АВС

В

А

С

Равнобедренный треугольник

Определение
Треугольник называется равнобедренным, если две его стороны равны.

боковая сторона

основание

боковая сторона

Дано: ∆АВСАВ = АС АВ, АС – боковые стороны ∆АВС ВС – основание ∆АВС ВАСРавнобедренный треугольникОпределение Треугольник

Слайд 2Дано: ∆АВС
АВ = АС = ВС
В
А
С
Равносторонний треугольник
Определение
Треугольник, все стороны которого

равны называется равносторонним.
Дано: ∆АВСАВ = АС = ВСВАСРавносторонний треугольникОпределение Треугольник, все стороны которого равны называется равносторонним.

Слайд 3Дано: ∆АВС
АВ = АС
В
А
С
Свойства равнобедренного треугольника
Теорема 1
В равнобедренном треугольнике

углы при основании равны.

1

2

Доказать:
В = С

D

Дано: ∆АВСАВ = АС ВАССвойства равнобедренного треугольникаТеорема 1 В равнобедренном треугольнике углы при основании равны.12Доказать:В = СD

Слайд 4Дано: ∆АВС
АВ = АС; 1 = 2.
В
А
С
Свойства равнобедренного треугольника
Теорема 2
В

равнобедренном треугольнике биссектриса, проведённая к основанию, является медианой и высотой.

1

2

3

4

Доказать:
1) BD = DC;
2) AD  DC.

D

Дано: ∆АВСАВ = АС; 1 = 2.ВАССвойства равнобедренного треугольникаТеорема 2 В равнобедренном треугольнике биссектриса, проведённая к основанию,

Слайд 5Утверждение 1
Высота равнобедренного треугольника, проведённая к основанию, является медианой и биссектрисой.
Утверждение

2
Медиана равнобедренного треугольника, проведённая к основанию, является высотой и биссектрисой.

Дано: ∆АВС – р/б
АВ = АС;
BD = DC;
AD  DC;
В = С.

Свойства равнобедренного треугольника

Утверждение 1Высота равнобедренного треугольника, проведённая к основанию, является медианой и биссектрисой.Утверждение 2Медиана равнобедренного треугольника, проведённая к основанию,

Слайд 6Теорема
Если сторона и два прилежащих к ней углам одного треугольника соответственно

равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

Второй признак равенства треугольников

Дано:
∆АВС, ∆А1В1С1
АВ = А1В1,
А = А1, В = В1

Доказать:
∆АВС = ∆А1В1С1

ТеоремаЕсли сторона и два прилежащих к ней углам одного треугольника соответственно равны стороне и двум прилежащим к

Слайд 7Теорема
Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника,

то такие треугольники равны.

Третий признак равенства треугольников

Дано:
∆АВС, ∆А1В1С1
АВ = А1В1,
АС = А1С1,
ВС = В1С1

Доказать:
∆АВС = ∆А1В1С1

ТеоремаЕсли три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.Третий признак равенства

Слайд 8Геометрия, 7 – 9: Учеб. для общеобразоват. учреждений / Л.С. Атанасян,

В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 2012.
http://www.graphicsfuel.com/2012/07/pencil-icon-vector-psd/ - карандаш

Использованы ресурсы

Геометрия, 7 – 9: Учеб. для общеобразоват. учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть