Задачи урока:
Образовательная – формирование у учащихся представления о звуковых волнах, их характеристиках с точки зрения физики, биологии, географии; изучение механизма передачи и восприятия звука живыми организмами;
Развивающая – развитие мышления учащихся, интереса к предмету на основе интеграции знаний;
Воспитательная – формирование навыков публичных выступлений, поиска информации и методов работы с информацией.
Жозеф Савер
В 1700 - 1707 гг. Жозеф Савёр первый определил границу восприятия колебаний как звуков: для низких звуков 25 колебаний в секунду, а для высоких - 12 800.
Пьер и Поль Кюри
В 1880 году французские учёные братья Пьер и Поль Кюри обнаружили пьезоэлектрический эффект для создания ультразвука и обнаружения не слышимого человеком ультразвука.
Полный период колебания волны звукового давления состоит из полупериода сжатия (повышения давления) и последующего полупериода разряжения молекул воздуха (понижения давления). Звуки с большей амплитудой (громкие) вызывают более сильное сжатие и разряжение молекул воздуха, чем звуки с меньшей амплитудой (тихие).
Скорость пульсации звукового давления называется "частотой волны". К звуковым волнам относятся те, частота пульсации давления которых в воздухе составляет от 20 до 20000 колебаний (полных периодов) в секунду.
Для измерения частоты звуковых колебаний используется единица, которая называется "герц" и обозначается Гц:
20 Гц = 20 колебаний в секунду.
Периодом волны называется время одного полного колебания звуковой волны, он измеряется в секундах и определяется по уравнению:
Период = 1/Частота.
Скорость распространения звуковой волны в воздухе при нормальных условиях (при 15 °С на уровне моря) составляет 344 м/с. Скорость звука не зависит от его частоты. Реальное расстояние, которое звуковая волна определенной частоты проходит за один полный период, называется "длиной волны". Длина волны выражается уравнением:
Длина волны = Скорость звука / Частота
16< < 20 000 Гц
< 16 Гц
В настоящее время звук можно разделить по частоте на следующие четыре основных диапазона
Инфразвук
При воздействии инфразвука могут отличаться друг от друга картины, создаваемые левым и правым глазом, начинает «ломаться» горизонт, возникают проблемы с ориентацией в пространстве, приходят необъяснимые тревога и страх. Подобные же ощущения вызывают и пульсации света частотой 4–8 Гц. Ещё египетские жрецы, чтобы добиться признания у пленника, связывали его и с помощью зеркала пускали в глаза пульсирующий солнечный луч. Через некоторое время у пленника появлялись судороги, начинала идти пена изо рта, психика подавлялась, и он начинал отвечать на вопросы.
Сходные воздействия инфразвука и мигающего света, не считая даже повышенную громкость звука, испытывают посетители дискотек. Вполне возможно, что они не проходят бесследно, и в организме могут происходить какие-либо нежелательные и необратимые изменения.
Влияние инфразвука на организм человека.
Кошки
Гамбузия
Рыбы реагируют за час до землетрясения. Если землетрясение не очень сильное, они собираются в плотную стайку, телами прижимаются друг к другу и стоят носом к эпицентру, буквально указывают на него. А когда землетрясение сильное, рыбы выпрыгивают из аквариума.
Что же заставляет пески звучать?
Некоторые учёные считают, что звук рождается при трении множества песчинок друг о друга. Песчинки покрыты тонким налётом соединений кальция и магния, и звуки возникают так же, как под скрипичным смычком, когда им проводят по струнам, натёртым канифолью. Другие полагают, что основная причина заключена в движении воздуха в промежутках между песчинками. Когда бархан осыпается, промежутки то увеличиваются, то уменьшаются, воздух то проникает в них, то выталкивается оттуда. Есть и такое объяснение: звуки вызываются электризацией песка. Благодаря трению песчинки заряжаются разноимённо и начинают отталкиваться одна от другой. А это порождает звуки, как при обычном электрическом разряде.
Гул песка (очень похожий на рёв реактивного самолёта) можно объяснить следующим. В любом бархане на небольшой глубине вследствие конденсации влаги из воздуха образуется слой уплотнённого влажного песка. Весной и осенью, после дождей, он смыкается с поверхностным, тоже влажным, слоем, – и тогда бархан становится немым. Летом, в жару, песок сверху высыхает, под ним остаётся влажный слой, а ещё ниже – снова сухой. Когда по бархану течёт песчаная лавина, то верхние слои песка, испытывая меньше трения, обгоняют нижние, при этом возникает своеобразная, хорошо заметная волнистость поверхности. Она передаётся толчками на слои влажного песка, и он, как дека музыкального инструмента, резонирующая от колебания струны, начинает вибрировать, издавая характерный гул.
Между прочим, когда такой песок привозят для изучения в лабораторию, он замолкает. Но если его поместить в герметично закрытый сосуд, он снова начинает звучать. Почему? Пока можно только высказывать предположения.
Инфразвук – причина катастроф.
Дело в том, что в Мировом океане громадные запасы метангидрата – метанового льда. Это конгломерат воды и газа, состоящий из кластеров из 32 молекул воды и 8 молекул метана. Метангидраты образуются там, где на морском дне через трещины в земной коре выделяется природный газ. Инфразвуковая волна, обладая огромной энергией, разрушает метановый лёд, и газ метан выделяется в воду. Кратеры, выделяющие метан, были обнаружены научно-исследовательским кораблём «Полярная звезда» (ФРГ) в море Лаптевых и у берегов Пакистана в 1987 г. Образующаяся при выделении метана газоводяная смесь имеет очень малую плотность, и корабль, оказавшийся в этой зоне, может внезапно утонуть. Так же и самолёт, пролетающий над таким местом, может неожиданно глубоко «провалиться» в воздушную яму и удариться о поверхность воды. Считается, что многие необъяснённые катастрофы кораблей и самолётов связаны именно с непредсказуемым выделением метана из морских глубин.
Ультразвук
Генерация ультразвуковых (УЗ) волн. Ультразвук можно получить от механических, электромагнитных и тепловых источников. В газовой среде УЗ-волны обычно возбуждаются механическими излучателями разного рода – сиренами прерывистого действия. Мощность ультразвука – до нескольких киловатт на частотах до 40 кГц.
Сирена – один из видов механических УЗ-излучателей. Она обладает относительно большой мощностью и применяется в милицейских и пожарных машинах. Все ротационные сирены имеют камеру, закрытую сверху диском (статором) с большим количеством отверстий. Столько же отверстий имеется и на вращающемся внутри камеры диске – роторе. При вращении ротора положение отверстий в нём периодически совпадает с положением отверстий на статоре. В камеру непрерывно подаётся сжатый воздух, который вырывается в те короткие мгновения, когда отверстия на роторе и статоре совпадают.
Издавая с помощью своего слухового аппарата ультразвуковые волны (до 250 раз в секунду), они способны ориентироваться в полете и успешно ловить добычу даже в полной темноте.
Летучая
мышь
Летучие мыши полагаются на свою акустическую память.
Во время ознакомительных полетов, когда используется традиционная ультразвуковая локация, зверьки запоминают «звуковую картину» пространства.
Дельфины
У растений, на которые действует классическая музыка и джаз, вырастают плотные здоровые листья и хорошо развиты корни.
Под воздействием рока у них настолько плохо развиваются корни, что растения начинают умирать.
Растения
Источники звука
100
Домашнее задание
Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.
Email: Нажмите что бы посмотреть