Презентация, доклад по физике на тему: Основы термодинамики

Содержание

Цели урока:Сформировать основные понятия термодинамикиСформулировать первый закон термодинамикиРассмотреть принцип действия тепловых двигателей и их КПДВыявить отрицательное воздействие тепловых двигателей на окружающую среду и наметить пути решения этой проблемы

Слайд 1Основы термодинамики

Основы термодинамики

Слайд 2Цели урока:
Сформировать основные понятия термодинамики
Сформулировать первый закон термодинамики
Рассмотреть принцип действия тепловых

двигателей и их КПД
Выявить отрицательное воздействие тепловых двигателей на окружающую среду и наметить пути решения этой проблемы
Цели урока:Сформировать основные понятия термодинамикиСформулировать первый закон термодинамикиРассмотреть принцип действия тепловых двигателей и их КПДВыявить отрицательное воздействие

Слайд 3ТЕРМОДИНАМИКА

ТЕРМОДИНАМИКА

Слайд 4ОСНОВЫ ТЕРМОДИНАМИКИ.
Это теория о наиболее общих свойствах макроскопических тел.

На первый

план выступают тепловые процессы и энергетические преобразования

Ядром являются два начала (закона) термодинамики

ОСНОВЫ ТЕРМОДИНАМИКИ.Это теория о наиболее общих свойствах макроскопических тел. На первый план выступают тепловые процессы и энергетические

Слайд 5ИЗ ИСТОРИИ РАЗВИТИЯ ТЕРМОДИНАМИКИ

ИЗ ИСТОРИИ РАЗВИТИЯ ТЕРМОДИНАМИКИ

Слайд 6ИЗ ИСТОРИИ РАЗВИТИЯ ТЕРМОДИНАМИКИ

ИЗ ИСТОРИИ РАЗВИТИЯ ТЕРМОДИНАМИКИ

Слайд 7ЧТО ИЗУЧАЕТ ТЕРМОДИНАМИКА?
√ Возникла как наука тепловых процессов, рассматриваемых с

точки зрения энергетических преобразований.

√ Не рассматривает явления с точки зрения движения молекул.

√ Изучает наиболее общие свойства макроскопических систем, находящихся в равновесном состоянии, и процессы их перехода из одного состояния в другое.

√ Термодинамический метод широко используется в других разделах физики, химии, биологии.


√ Как и любая физическая теория или раздел физики, имеет свои границы применимости.

ЧТО ИЗУЧАЕТ ТЕРМОДИНАМИКА?√  Возникла как наука тепловых процессов, рассматриваемых с точки зрения энергетических преобразований. √ Не

Слайд 8ГРАНИЦЫ ПРИМЕНИМОСТИ ТЕРМОДИНАМИКИ
Неприменима к системе из нескольких молекул.


Не может быть применима

ко всей Вселенной, слишком сложной и неопределенной физической системе.
ГРАНИЦЫ ПРИМЕНИМОСТИ ТЕРМОДИНАМИКИНеприменима к системе из нескольких молекул.Не может быть применима ко всей Вселенной, слишком сложной и

Слайд 9ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМА

Любая совокупность макроскопических тел, которые взаимодействуют между собой и с

внешними объектами посредством передачи энергии и вещества.

ИЗОЛИРОВАННЫЕ

СТАТИЧЕСКИЕ

Не обмениваются с другими системами ни веществом ни энергией

При отсутствие взаимодействия параметры системы остаются неизменными

ВЗАИМОДЕЙСТВИЕ



ОТКРЫТАЯ

ЗАКРЫТАЯ

С окружающей средой веществом


не обменивается, но обменивается энергией

Обменивается и энергией


Живой организм

утюг

ТЕРМОДИНАМИЧЕСКАЯ СИСТЕМАЛюбая совокупность  макроскопических тел,  которые взаимодействуют  между собой и с внешними  объектами

Слайд 10ТЕРМОДИНАМИЧЕСКИЕ ПАРАМЕТРЫ
Совокупность физических величин, характеризующих свойства термодинамической системы.

ТЕРМОДИНАМИЧЕСКИЕ ПАРАМЕТРЫСовокупность физических величин, характеризующих свойства термодинамической системы.

Слайд 11Внутренняя энергия

Определение:
Внутренняя энергия тела – это сумма кинетической энергии хаотического теплового

движения частиц (атомов и молекул) тела и потенциальной энергии их взаимодействия

Обозначение:
U
Единицы измерения:
[Дж]


Внутренняя энергия Определение:Внутренняя энергия тела – это сумма кинетической энергии хаотического теплового движения частиц (атомов и молекул)

Слайд 12Внутренняя энергия идеального одноатомного газа
число молекул
кинетическая энергия одной молекулы


(NAk =

R)


Внутренняя энергия идеального одноатомного газа число молекулкинетическая энергия одной молекулы  (NAk = R)

Слайд 13Внутренняя энергия идеального одноатомного газа

Внутренняя энергия идеального одноатомного газа

Слайд 14Внутренняя энергия идеального двухатомного газа

Внутренняя энергия идеального двухатомного газа

Слайд 15
Так как
- уравнение Менделеева–Клапейрона,
то внутренняя энергия:
- для одноатомного газа
- для

двухатомного газа.
Так как - уравнение Менделеева–Клапейрона,то внутренняя энергия:- для одноатомного газа- для двухатомного газа.

Слайд 16В общем виде:
где i – число степеней свободы молекул газа (i

= 3 для одноатомного газа и i = 5 для двухатомного газа)
В общем виде:где i – число степеней свободы молекул газа (i = 3 для одноатомного газа и

Слайд 17Изменение внутренней энергии тела ΔU
Совершение работы А

над

самим
телом телом
ΔU ΔU

Теплообмен Q


теплопроводность

конвекция

излучение




Изменение внутренней энергии тела ΔUСовершение работы А над        самимтелом

Слайд 18Работа в термодинамике
Работа газа:




Работа внешних сил:





Работа в термодинамикеРабота газа:Работа внешних сил:

Слайд 19I ЗАКОН ТЕРМОДИНАМИКИ
Изменение внутренней энергии ΔU системы равно сумме работы A

совершенной внешними телами над системой, и сообщенного ей количества теплоты Q.
ΔU=A+Q


A*=-A

Q=A*+ Δ U

Количество теплоты Q, переданное системе, расходуется на увеличение её внутренней энергии Δ U и совершение системой работы A* над внешними телами.

(Закон сохранения и превращения энергии в применении к тепловым процессам)

I ЗАКОН ТЕРМОДИНАМИКИИзменение внутренней энергии ΔU системы равно сумме работы A совершенной внешними телами над системой, и

Слайд 20Первый закон термодинамики
Изменение внутренней энергии системы при переходе её из одного

состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе


Количество теплоты, переданное системе, идёт на изменение её внутренней энергии и на совершение системой работы над внешними телами

Первый закон термодинамикиИзменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы

Слайд 21ТЕРМОДИНАМИКА ИЗОПРОЦЕССОВ.
Процессы, происходящие при постоянном значении одного из параметров состояния (T,V

или P) с данной массой газа называются изопроцессами.

ИЗОТЕРМИЧЕСКИЙ

ИЗОХОРНЫЙ

ИЗОБАРНЫЙ

АДИАБАТНЫЙ

ТЕРМОДИНАМИКА ИЗОПРОЦЕССОВ.Процессы, происходящие при постоянном значении одного из параметров состояния (T,V или P) с данной массой газа

Слайд 22ИЗОТЕРМИЧЕСКИЙ ПРОЦЕСС
Процесс, происходящий при постоянной температуре.

T=const

Δ U=0
Q+A=0
Q=-A=A*


ИЗОТЕРМИЧЕСКИЙ ПРОЦЕССПроцесс, происходящий при постоянной температуре.

Слайд 23При изотермическом процессе (Т=const):

P
V
Изотермическое расширение
Р2
1
2
V1
V2










При изотермическом процессе (Т=const):PVИзотермическое расширениеР212V1V2

Слайд 24ИЗОХОРНЫЙ ПРОЦЕСС
Процесс, происходящий при постоянном объёме.
V=const
Q= Δ U
A=0

ИЗОХОРНЫЙ ПРОЦЕСС Процесс, происходящий при постоянном объёме.V=constQ= Δ UA=0

Слайд 25Работа газа при изопроцессах
При изохорном процессе (V=const):
ΔV =

0 работа газом не совершается:



P

V

Изохорное нагревание

Работа газа при изопроцессахПри изохорном процессе (V=const):   ΔV = 0 работа газом не совершается:

Слайд 26ИЗОБАРНЫЙ ПРОЦЕСС
Процесс, происходящий при постоянном давлении.
A*=p ( +

)

ΔU=A+Q

Q=A*+ Δ U


ИЗОБАРНЫЙ ПРОЦЕСС Процесс, происходящий при постоянном давлении.A*=p (   +   )ΔU=A+QQ=A*+ Δ U

Слайд 27 При изобарном процессе (Р=const):
P
V
V1
V2
P
Изобарное расширение
1
2

При изобарном процессе (Р=const):  PVV1V2PИзобарное расширение12

Слайд 28АДИАБАТНЫЙ ПРОЦЕСС
Процесс, происходящий без теплообмена с внешней средой.(Обычно отсутствие теплообмена обусловлено

быстротой процесса: теплообмен не успевает произойти)


Q=0
ΔU=-A*


АДИАБАТНЫЙ ПРОЦЕССПроцесс, происходящий без теплообмена с внешней средой.(Обычно отсутствие теплообмена обусловлено быстротой процесса: теплообмен не успевает произойти)Q=0ΔU=-A*

Слайд 29Геометрическое истолкование работы:
Работа, совершаемая газом в процессе его расширения (или сжатия)

при любом термодинамическом процессе, численно равна площади под кривой, изображающей изменение состояния газа на диаграмме (р,V).

P

V

V1

V2

P





P

V

Р2

1

2

V1

V2











S

S

Р1


Геометрическое истолкование работы:Работа, совершаемая газом в процессе его расширения (или сжатия) при любом термодинамическом процессе, численно равна

Слайд 30Количество теплоты – часть внутренней энергии, которую тело получает или теряет

при теплопередаче


Количество теплоты – часть внутренней энергии, которую тело получает или теряет при теплопередаче

Слайд 31Применение первого закона термодинамики к различным процессам

Применение первого закона термодинамики к различным процессам

Слайд 32II ЗАКОН ТЕРМОДИНАМИКИ
Тепловые процессы необратимы.
Не возможно перевести теплоту от более

холодной системы к более горячей при отсутствии других одновременных изменений в обеих системах или окружающих телах.

Не возможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара.

Не возможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела более нагретому.

II ЗАКОН ТЕРМОДИНАМИКИ Тепловые процессы необратимы.Не возможно перевести теплоту от более холодной системы к более горячей при

Слайд 33 Тепловые двигатели –
устройства, превращающие

внутреннюю энергию топлива в механическую.

Виды тепловых двигателей

Тепловые двигатели – устройства, превращающие внутреннюю энергию топлива в механическую. Виды

Слайд 34ТЕПЛОВОЙ ДВИГАТЕЛЬ – ГЛАВНЫЙ ДВИГАТЕЛЬ СОВРЕМЕННОЙ ЭНЕРГЕТИКИ
Периодически действующий двигатель, совершающий работу

за счет полученной извне теплоты.

НАГРЕВАТЕЛЬ (Т1)

РАБОЧЕЕ ТЕЛА

ХОЛОДИЛЬНИК (Т2)



Q1

Q2


A*

A*=Q1 – Q2

Виды двигателей:
Паровая и газовая турбины
Карбюраторный двс
Дизель двс
Ракетный двигатель

ТЕПЛОВОЙ ДВИГАТЕЛЬ –  ГЛАВНЫЙ ДВИГАТЕЛЬ СОВРЕМЕННОЙ ЭНЕРГЕТИКИПериодически действующий двигатель, совершающий работу за счет полученной извне теплоты.НАГРЕВАТЕЛЬ

Слайд 35Принцип действия тепловых двигателей
Т1 – температура нагревателя

Т2 – температура холодильника

Q1 –

количество теплоты, полученное от нагревателя

Q2 – количество теплоты, отданное холодильнику
Принцип действия тепловых двигателейТ1 – температура нагревателяТ2 – температура холодильникаQ1 – количество теплоты, полученное от нагревателяQ2 –

Слайд 36Коэффициент полезного действия (КПД) теплового двигателя –
отношение работы А’, совершаемой

двигателем, к количеству теплоты, полученному от нагревателя:


Коэффициент полезного действия (КПД) теплового двигателя – отношение работы А’, совершаемой двигателем, к количеству теплоты, полученному от

Слайд 37где

работа, совершаемая
двигателем
тогда


КПД всегда меньше единицы, так как у всех двигателей

некоторое количество теплоты
передаётся холодильнику

При


двигатель не может работать

гдеработа, совершаемая двигателемтогдаКПД всегда меньше единицы, так как у всех двигателей некоторое количество теплотыпередаётся холодильникуПри двигатель не

Слайд 38Максимальное значение КПД
тепловых двигателей (цикл Карно):

Максимальное значение КПД тепловых двигателей (цикл Карно):

Слайд 39Отрицательные последствия использования тепловых двигателей:

Потепление климата
Загрязнение атмосферы
Уменьшение кислорода в

атмосфере

Решение проблемы:

Вместо горючего использовать сжиженный газ.
Бензин заменить водородом.
Электромобили.
Дизели.
На тепловых электростанциях использовать скрубберы, в которых сера связывается с известью.
Сжигание угля в кипящем слое.

КПД тепловых двигателей


Отрицательные последствия использования тепловых двигателей:Потепление климатаЗагрязнение атмосферыУменьшение кислорода в   атмосфереРешение проблемы: Вместо горючего использовать сжиженный

Слайд 40ВЕЧНЫЙ ДВИГАТЕЛЬ
Первого рода

Второго рода
Целиком превращал бы в работу теплоту, извлекаемою из

окружающих тел

Будучи раз пущен в ход, совершал бы работу неограниченно долгое время, не заимствуя энергию извне

НЕВОЗМОЖНЫ





Противоречит закону сохранения и превращения энергии

Противоречит второму началу термодинамики

ВЕЧНЫЙ ДВИГАТЕЛЬПервого родаВторого родаЦеликом превращал бы в работу теплоту, извлекаемою из окружающих телБудучи раз пущен в ход,

Слайд 41ТЕРМОДИНАМИКА И ПРИРОДА
В окружающей нас природе термодинамически обратимых процессов нет.
Энтропия в

термодинамически не обратимых процессах, протекающих в изолированной системе, возрастает.

По определению А. Эддингтона, возрастание энтропии, определяющей необратимые процессы есть «стрела времени»:чем выше энтропия системы, тем больше временной промежуток прошла система в своей эволюции.

Возрастание энтропии вселенной должно привести к тому, что температура всех тел сравняется т. е. наступит тепловое равновесие и все процессы прекратятся, наступит «тепловая смерть Вселенной». (Выводы второго закона термодинамики не всегда имеют место в природе и его нельзя применить ко всем существующим процессам).

ТЕРМОДИНАМИКА И ПРИРОДАВ окружающей нас природе термодинамически обратимых процессов нет.Энтропия в термодинамически не обратимых процессах, протекающих в

Слайд 42Тест по ТЕРМОДИНАМИКЕ
На сколько отделов делится термодинамика как предмет?
а) на три в)

на пять
б) на четыре г) на шесть
Кем была предложена температурная шкала, которой мы пользуемся в повседневной жизни?
а) Кельвином в) Карно
б) Цельсием г) Джоулем
Что изучает термодинамика?
а) тепловые процессы в) звуковые явления
б) движение молекул г) механические явления
Термодинамическая система, которая не взаимодействует с другими системами называется:
а) закрытой в) статической
б) изолированной г) открытой
Процессы, происходящие при постоянной температуре называются:
а) адиабатными в) изобарными
б) изотермическими г) изохорными




Тест по ТЕРМОДИНАМИКЕНа сколько отделов делится термодинамика как предмет?а) на три		в) на пятьб) на четыре		г) на шестьКем

Слайд 43Тест по ТЕРМОДИНАМИКЕ (продолжение)
При каком изопроцессе работа не совершается?
а) при изотермическом в) адиабатном
б)

изохорном г) изобарном
7. Согласно второму началу термодинамики тепловые процессы:
а) обратимы в) необратимы
б) изолированы г) закрыты
8. Какой двигатель не является тепловым?
а) паровая турбина в) ракетный двигатель
б) водяная турбина г) дизель
9. Энтропия в термодинамически необратимых процессах:
а) возрастает в) не изменяется
б) уменьшатся г) равна нулю
10. Тепловая смерть Вселенной наступит, если:
а) температура всех тел сравняется;
б) температура всех тел станет равной нулю;
в) температура всех тел будет повышаться;
г) температура всех тел будет понижаться.
Тест по ТЕРМОДИНАМИКЕ (продолжение)При каком изопроцессе работа не совершается?	а) при изотермическом		в) адиабатном	б) изохорном			г) изобарном7.  Согласно второму

Слайд 44Литература
Мякишев Г.Я., Буховцев Б.Б.,Сотский Н.Н. Физика 10 класс. – М.: Просвещение.
Касьянов

В.А. Физика 10 класс. – М.: Дрофа, 2006. – 410 с.
Волков В.А. Поурочные разработки по физике. 10 класс. – М: Вако, 2006. – 400 с.
Касаткина И.Л., Ларцева Н.А., Шкиль Т.В. Репетитор по физике. В 2-х томах. Том 1. – Ростов-на-Дону: Феникс, 1995. – 863 с.
www: fiz.1september.ru
ЛитератураМякишев Г.Я., Буховцев Б.Б.,Сотский Н.Н. Физика 10 класс. – М.: Просвещение.Касьянов В.А. Физика 10 класс. – М.:

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть