Презентация, доклад по физике к уроку в 11кл Искусственная радиоактивность

Искусственная радиоактивность — самопроизвольный распад ядер элементов, полученных искусственным путем через соответствующие ядерные реакции. Я́дерная реа́кция — процесс превращения атомных ядер, происходящий при их взаимодействии с элементарными частицами, гамма-квантами и друг с другом, обычно

Слайд 1Искусственная радиоактивность

Искусственная радиоактивность

Слайд 2 Искусственная радиоактивность — самопроизвольный распад ядер элементов, полученных искусственным путем

через соответствующие ядерные реакции.
Я́дерная реа́кция — процесс превращения атомных ядер, происходящий при их взаимодействии с элементарными частицами, гамма-квантами и друг с другом, обычно приводящий к выделению колоссального количества энергии
Первая ядерная реакция была осуществлена Э. Резерфордом в 1919 году в опытах по обнаружению протонов в продуктах распада ядер


Искусственная радиоактивность — самопроизвольный распад ядер элементов, полученных искусственным путем через соответствующие ядерные реакции.  Я́дерная

Слайд 3Из истории.
Искусственную радиоактивность открыли супруги Ирен (1897—1956) и

Фредерик (1900— 1958) Жолио-Кюри. 15 января 1934 года их заметка была представлена Ж. Перреном на заседании Парижской Академии наук. Ирен и Фредерик сумели установить, что после бомбардировки альфа-частицами некоторые легкие элементы — магний, бор, алюминий — испускают позитроны.

Из истории.   Искусственную радиоактивность открыли супруги Ирен (1897—1956) и Фредерик (1900— 1958) Жолио-Кюри. 15 января

Слайд 4
Далее они попытались

установить механизм этого испускания, которое отличалось по своему характеру от всех известных в то время случаев ядерных превращений. Ученые поместили источник альфа-частиц (препарат полония) на расстоянии одного миллиметра от алюминиевой фольги. Затем они подвергали ее облучению в течение примерно десяти минут. Счетчик Гейгера — Мюллера показал, что фольга испускает излучение, интенсивность которого падает во времени по экспоненциальной зависимости с периодом полураспада 3 минут 15 секунд. В экспериментах с бором и магнием периоды полураспада составили 14 и 2,5 минут соответственно.
Единственным и неоспоримым доказательством того, что алюминий превращается в фосфор и потом в кремний с зарядом 14 и массой 30, могло быть только выделение этих элементов и их идентификация с помощью характерных для них качественных химических реакций.
27Al + 4He = 30P + n
Радиоактивный фосфор распадается до устойчивого изотопа кремния с выделением позитрона:
30P = 30Si + e+


 

Далее они попытались установить механизм этого испускания, которое отличалось по

Слайд 5 Для любого химика, работающего с устойчивыми соединениями, это

было простой задачей, но у Ирен и Фредерика положение было совершенно иным: полученные ими атомы фосфора существовали чуть больше трех минут. Химики располагают множеством методов обнаружения этого элемента, но все они требуют длительных определений. Поэтому мнение химиков было единодушным: идентифицировать фосфор за такое короткое время невозможно.

Однако супруги Жолио-Кюри не признавали слова «невозможно». И хотя эта «неразрешимая» задача требовала непосильного труда, напряжения, виртуозной ловкости и бесконечного терпения, она была решена. Несмотря на чрезвычайно малый выход продуктов ядерных превращений и совершенно ничтожную массу вещества, претерпевшего превращение, — лишь несколько миллионов атомов, удалось установить химические свойства полученного радиоактивного фосфора».
 

Для любого химика, работающего с устойчивыми соединениями, это было простой задачей, но у Ирен

Слайд 6 Обнаружение искусственной радиоактивности сразу было оценено как одно

из крупнейших открытий века. До этого радиоактивность, которая была присуща некоторым элементам, не могла быть ни вызвана, ни уничтожена, ни как-нибудь изменена человеком. Супруги Жолио-Кюри впервые искусственно вызвали радиоактивность, получив новые радиоактивные изотопы. Ученые предвидели большое теоретическое значение этого открытия и возможности его практических приложений в области биологии и медицины.
Уже в следующем году первооткрыватели искусственной радиоактивности Ирен и Фредерик Жолио-Кюри были удостоены Нобелевской премии по химии.

Обнаружение искусственной радиоактивности сразу было оценено как одно из крупнейших открытий века. До этого

Слайд 7 Продолжая эти исследования, итальянский ученый Ферми показал, что

бомбардировка нейтронами вызывает искусственную радиоактивность в тяжелых металлах.
В 1938 году Ферми была присуждена Нобелевская премия по физике. В решении Нобелевского комитета говорилось, что премия присуждена Ферми «за доказательства существования новых радиоактивных элементов, полученных при облучении нейтронами, и связанное с этим открытие ядерных реакций, вызываемых медленными нейтронами»
 
Об искусственной радиоактивности Энрико Ферми узнал сразу же, весной 1934 года, как только супруги Жолио-Кюри опубликовали свои результаты. Ферми решил повторить опыты Жолио-Кюри, но пошел совершенно иным путем, применив в качестве бомбардирующих частиц нейтроны.
Продолжая эти исследования, итальянский ученый Ферми показал, что бомбардировка нейтронами вызывает искусственную радиоактивность в

Слайд 8 Весной 1934 года Ферми начал облучать элементы

нейтронами. «Нейтронные пушки» Ферми представляли собой маленькие трубочки длиной несколько сантиметров. Их заполняли «смесью» тонкодисперсного порошка бериллия и эманации радия. Вот как Ферми описывал один из таких источников нейтронов:
 
«Это была стеклянная трубочка размером всего 1,5 см.., в которой находились зерна бериллия; прежде чем запаять трубочку, надо было ввести в нее некоторое количество эманации радия. Альфа-частицы, испускаемые радоном, в большом числе сталкиваются с атомами бериллия и дают нейтроны...
 
Опыт выполняется следующим образом. В непосредственной близости от источника нейтронов помещают пластинку алюминия, или железа, или вообще того элемента, который желательно изучить, и оставляют на несколько минут, часов или дней (в зависимости от конкретного случая). Нейтроны, -вылетающие из источника, сталкиваются с ядрами вещества. При этом происходит множество ядерных реакций самого различного типа...»

Весной 1934 года Ферми начал облучать элементы нейтронами. «Нейтронные пушки» Ферми представляли собой

Слайд 9 В сущности, многое было известно. Нейтроны попадали в

ядро обстреливаемого атома, превращали его в нестабильный изотоп, который спонтанно распадался и излучал. В этом излучении и таилось неизвестное: некоторые из искусственно полученных изотопов излучали бета-лучи, другие — гамма-лучи, третьи — альфа-частицы. С каждым днем число искусственно полученных радиоактивных изотопов возрастало. Каждую новую ядерную реакцию необходимо было осмыслить, чтобы разобраться в сложных превращениях атомов Для каждой реакции надо было установить характер излучения, потому что, только зная его, можно представить схему радиоактивного распада и предсказать элемент, который получится в конечном результате. Затем приходила очередь химиков. Они должны были идентифицировать полученные атомы. На это тоже требовалось время.
  С помощью своей «нейтронной пушки» Ферми подверг бомбардировке фтор, алюминий, кремний, фосфор, хлор, железо, кобальт, серебро и йод. Все эти элементы активировались, и во многих случаях Ферми мог указать химическую природу образовавшегося радиоактивного элемента. Ему удалось этим методом активизировать 47 из 68 изученных элементов.
 

В сущности, многое было известно. Нейтроны попадали в ядро обстреливаемого атома, превращали его в

Слайд 10 22 октября 1934 года Ферми сделал фундаментальное открытие.

Поместив между источником нейтронов и активируемым серебряным цилиндром парафиновый клин, Ферми заметил, что клин не уменьшает активность нейтронов, а несколько увеличивает ее. Ферми сделал вывод, что этот эффект, по-видимому, обусловлен наличием водорода в парафине, и решил проверить, как будет влиять на активность расщепления большое количество водородсодержащих элементов. Проведя опыт сначала с парафином, потом с водой, Ферми констатировал увеличение активности в сотни раз. Опыты Ферми обнаружили огромную эффективность медленных нейтронов.
 
22 октября 1934 года Ферми сделал фундаментальное открытие. Поместив между источником нейтронов и активируемым

Слайд 11 Но, помимо замечательных экспериментальных результатов, в этом же

году Ферми достиг замечательных теоретических достижений. Уже в декабрьском номере 1933 года в итальянском научном журнале были опубликованы его предварительные соображения о бета-распаде. В начале 1934 года была опубликована его классическая статья «К теории бета-лучей». Авторское резюме статьи гласит: «Предлагается количественная теория бета-распада, основанная на существовании нейтрино: при этом испускание электронов и нейтрино рассматривается по аналогии с эмиссией светового кванта возбужденным атомом в теории излучения. Выведены формулы из времени жизни ядра и для формы непрерывного спектра бета-лучей; полученные формулы сравниваются с экспериментом».
 
Ферми в этой теории дал жизнь гипотезе нейтрино и протонно-нейтронной модели ядра, приняв также гипотезу изотонического спина, предложенную Гейзенбергом для этой модели. Опираясь на высказанные Ферми идеи, Хидеки Юкава предсказал в 1935 году существование новой элементарной частицы, известной ныне под названием пи-мезона, или пиона.


Но, помимо замечательных экспериментальных результатов, в этом же году Ферми достиг замечательных теоретических достижений.

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть