Слайд 1МИ НИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ
ГБПОУ «Технологический колледж им. Н.Д.Кузнецова»
СПЕЦИАЛЬНОСТЬ ИНФОРМАЦИОННЫЕ СИСТЕМЫ
Презентация
по физике на тему:
«Конденсаторы»
Подготовил: студент 1 курса
Видясова Виктория Сергеевна
Научный руководитель:
Курочкина Ольга Васильевна
Самара, 2016 год.
Слайд 2
Введение:
Определение
Виды конденсаторов
Маркировка конденсаторов
Применение конденсаторов
Слайд 3ОПРЕДЕЛЕНИЕ
Конденсатор — это электрический (электронный) компонент, построенный из двух проводников (обкладок),
разделенные между собой слоем диэлектрика. Различают много видов конденсаторов и в основном они делятся по материалу самих обкладок и по виду используемого диэлектрика между ними.
Слайд 4Виды конденсаторов
Бумажные и металлобумажные конденсаторы
У бумажного конденсатора диэлектриком, разделяющим фольгированные обкладки,
является специальная конденсаторная бумага. В электронике бумажные конденсаторы могут применяться как в цепях низкой частоты, так и в высокочастотных цепях.Хорошим качеством электрической изоляции и повышенной удельной емкостью обладают герметичные металлобумажные конденсаторы, у которых вместо фольги (как в бумажных конденсаторах) используется вакуумное напыление металла на бумажный диэлектрик. Бумажный конденсатор не имеет большую механическую прочность, поэтому его начинку помещают в металлический корпус, служащий механической основой его конструкции.
Слайд 5
Электролитические конденсаторы
В электролитических конденсаторах, в отличии от бумажных, диэлектриком является тонкий
слой оксида металла, образованный электрохимическим способом на положительной обложке из того же металла.Вторую обложку представляет собой жидкий или сухой электролит. Материалом, создающим металлический электрод в электролитическом конденсаторе, может быть, в частности, алюминий и тантал. Традиционно, на техническом жаргоне «электролитом» называют алюминиевые конденсаторы с жидким электролитом.
Но, на самом деле, к электролитическим так же относятся и танталовые конденсаторы с твердым электролитом (реже встречаются с жидким электролитом). Почти все электролитические конденсаторы поляризованы, и поэтому они могут работать только в цепях с постоянным напряжением с соблюдением полярности.
В случае инверсии полярности, может произойти необратимая химическая реакция внутри конденсатора, ведущая к разрушению конденсатора, вплоть до его взрыва по причине выделяемого внутри него газа.
К электролитическим конденсаторам так же относится, так называемые, суперконденсаторы (ионисторы) обладающие электроемкостью, доходящей порой до нескольких тысяч Фарад.
Слайд 6
Алюминиевые электролитические конденсаторы
В качестве положительного электрода используется алюминий. Диэлектрик представляет собой
тонкий слой триоксида алюминия (Al2O3),
Свойства:
они работают корректно только на малых частотах
имеют большую емкость
Характеризуются высоким соотношением емкости к размеру: электролитические конденсаторы обычно имеют большие размеры, но конденсаторы другого типа, одинаковой емкости и напряжением пробоя были бы гораздо больше по размеру. Характеризуются высокими токами утечки,
имеют умеренно низкое сопротивление и индуктивность.
Слайд 7
Танталовые электролитические конденсаторы
Это вид электролитического конденсатора, в которых металлический электрод выполнен
из тантала, а диэлектрический слой образован из пентаоксида тантала (Ta2O5).
Свойства:
высокая устойчивость к внешнему воздействию,
компактный размер: для небольших (от нескольких сотен микрофарад), размер сопоставим или меньше, чем у алюминиевых конденсаторов с таким же максимальным напряжением пробоя,
меньший ток утечки по сравнению с алюминиевыми конденсаторами.
Слайд 8
Полимерные конденсаторы
В отличие от обычных электролитических конденсаторов, современные твердотельные конденсаторы вместо
оксидной пленки, используемой в качестве разделителя обкладок, имеют диэлектрик из полимера. Такой вид конденсатора не подвержен раздуванию и утечки заряда. Физические свойства полимера способствуют тому, что такие конденсаторы отличаются большим импульсным током, низким эквивалентным сопротивлением и стабильным температурным коэффициентом даже при низких температурах. Полимерные конденсаторы могут заменять электролитические или танталовые конденсаторы во многих схемах, например, в фильтрах для импульсных блоков питания, или в преобразователях DC-DC.
Слайд 9
Пленочные конденсаторы
В данном виде конденсатора диэлектриком является пленка из пластика, например,
полиэстер (KT, MKT, MFT), полипропилен (KP, MKP, MFP) или поликарбонат (KC, MKC). Электроды могут быть напыленными на эту пленку (MKT, MKP, MKC) или изготовлены в виде отдельной металлической фольги, сматывающейся в рулон или спрессованной вместе с пленкой диэлектрика (KT, KP, KC). Современным материалом для пленки конденсаторов является полифениленсульфид (PPS).
Общие свойства пленочных конденсаторов (для всех видов диэлектриков):
работают исправно при большом токе
имеют высокую прочность на растяжение
имеют относительно небольшую емкость
минимальный ток утечки
используется в резонансных цепях и в RC-снабберах
Отдельные виды пленки отличаются:
температурными свойствами (в том числе со знаком температурного коэффициента емкости, который является отрицательным для полипропилена и полистирола, и положительным для полиэстера и поликарбоната)
максимальной рабочей температурой (от 125 °C, для полиэстера и поликарбоната, до 100 °C для полипропилена и 70 °С для полистирола)
устойчивостью к электрическому пробою, и следовательно максимальным напряжением, которое можно приложить к определенной толщине пленки без пробоя.
Слайд 10
Конденсаторы керамические
Этот вид конденсаторов изготавливают в виде одной пластины или пачки
пластин из специального керамического материалла. Металлические электроды напыляют на пластины и соединяют с выводами конденсатора. Используемые керамические материалы могут иметь очень разные свойства. Разнообразие включает в себя, прежде всего, широкий диапазон значений относительной электрической проницаемости (до десятков тысяч, и такая величина имеется только у керамических материалов)
Столь высокое значение проницаемости позволяет производить керамические конденсаторы (многослойные) небольших размеров, емкость которых может конкурировать с емкостью электролитических конденсаторов, и при этом работающих с любой поляризацией и характеризующихся меньшими утечками.
Керамические материалы характеризуются сложной и нелинейной зависимостью параметров от температуры, частоты, напряжения. В виду малого размера корпуса — данный вид конденсаторов имеет особую маркировку.
Слайд 11
Конденсаторы с воздушным диэлектриком
Здесь диэлектриком является воздух. Такие конденсаторы отлично работают
на высоких частотах, и часто выполняются как конденсаторы переменной емкости (для настройки).
Слайд 12Как маркируются большие конденсаторы?
Чтобы правильно прочитать технические характеристики устройства, необходимо провести
определенную подготовку. Начинать изучение нужно с единиц измерения. Для определения емкости применяется специальная единица – фарад (Ф). Значение одного фарада для стандартной цепи представляется слишком большим, поэтому маркировка бытовых конденсаторов осуществляется менее крупными единицами измерения. Чаще всего используется mF = 1 мкф (микрофарад), что составляет 10-6 фарад.
Слайд 13
При расчетах может применяться внемаркировочная единица – миллифарад (1мФ), имеющая значение
10-3 фарад. Кроме того, обозначения могут быть в нанофарадах (нФ) равных 10-9 Ф и пикофарадах (пФ), составляющих 10-12 Ф. Нанесение маркировки емкости конденсаторов с большими размерами осуществляется прямо на корпус. В некоторых конструкциях маркировка может отличаться, но в целом, необходимо ориентироваться по единицам измерения, которые упоминались выше.
Слайд 14
Обозначения иногда наносятся прописными буквами, например, MF, что на самом деле
соответствует mF – микрофарадам. Также встречается маркировка fd – сокращенное английское слово farad. Поэтому mmfd будет соответствовать mmf или пикофараду. Кроме того, существуют обозначения, включающие число и одну букву. Такая маркировка выглядит как 400m и применяется для маленьких конденсаторов. В некоторых случаях возможно нанесение допусков, которые являются допустимым отклонением от номинальной емкости конденсатора. Данная информация имеет большое значение, когда при сборке отдельных видов электрических цепей могут потребоваться конденсаторы с точным значением емкости. Если в качестве примера взять маркировку 6000uF + 50%/-70%, то значение максимальной емкости составит 6000 + (6000 х 0,5) = 9000 мкФ, а минимальной 1800 мкФ = 6000 - (6000 х 0,7).
Слайд 15
При отсутствии процентов, необходимо отыскать букву. Обычно она располагается отдельно или
после числового обозначения емкости. Каждой букве соответствует определенное значение допуска. После этого можно приступать к определению номинального напряжения. При больших размеров корпуса конденсатора, маркировка напряжения обозначается числами, за которыми расположены буквы или буквенные сочетания в виде V, VDC, WV или VDCW. Символы WV соответствуют английскому словосочетанию WorkingVoltage, что в переводе означает рабочее напряжение. Цифровые показатели считаются максимально допустимым напряжением конденсатора, измеряемым в вольтах.
Слайд 16
При отсутствии на корпусе устройства какого-либо обозначения, указывающего на напряжение, такой
конденсатор должен использоваться только в низковольтных цепях. В цепи переменного тока следует использовать устройство, предназначенное именно для этих целей. Нельзя применять конденсаторы, рассчитанные на постоянный ток, без возможности преобразования номинального напряжения. Следующим этапом будет определение положительных и отрицательных символов, указывающих на наличие полярности. Определение плюса и минуса имеет большое значение, поскольку неправильное определение полюсов может привести к короткому замыканию и даже взрыву конденсатора. При отсутствии специальных обозначений, подключение устройства может быть выполнено к любым клеммам, независимо от полярности.
Слайд 17
Обозначение полюсов иногда наносится в виде цветной полосы или кольцеобразного углубления.
Такая маркировка соответствует отрицательному контакту в электролитических алюминиевых конденсаторах, своей формой напоминающих консервную банку. В танталовых конденсаторах с очень маленькими размерами эти же обозначения указывают на положительный контакт. При наличии символов плюса и минуса цветовую маркировку можно не принимать во внимание.
Прочие маркировки.
Маркировка, нанесенная на корпус конденсатора, позволяет определить значение напряжения. На рисунке отражены специальные символы, соответствующие максимально допустимому напряжению для конкретного устройства. В данном случае приводятся параметры для конденсаторов, которые могут эксплуатироваться только при постоянном токе.
Слайд 18
В некоторых случаях маркировка конденсаторов значительно упрощается. С этой целью используется
только первая цифра. Например, ноль будет означать напряжение ниже 10 вольт, значение 1 – от 10 до 99 вольт, 2 – от 100 до 999 В и так далее, по такому же принципу. Прочие маркировки касаются конденсаторов, выпущенных значительно раньше или предназначенных для особых целей. В таких случаях рекомендуется воспользоваться специальными справочниками, чтобы не допустить серьезной ошибки при сборке электрической схемы.
Слайд 19Применение конденсаторов.
Энергия конденсатора обычно не очень велика – не более сотен
джоулей. К тому же она не сохраняется из-за неизбежной утечки заряда. Поэтому заряженные конденсаторы не могут заменить, например, аккумуляторы в качестве источников электрической энергии. Конденсаторы могут накапливать энергию более или менее длительное время, а при зарядке через цепь малого сопротивления они отдают энергию почти мгновенно. Именно это свойство используют широко на практике. Лампа- вспышка, применяемая в фотографии, питается электрическим током разряда конденсатора, заряжаемого предварительно специальной батареей. Возбуждение квантовых источников света – лазеров осуществляется с помощью газоразрядной трубки, вспышка которой происходит при разрядке батареи конденсаторов большой электроемкости. Однако основное применение конденсаторы находят в радиотехнике…