Слайд 1Искусственные спутники Земли
Слайд 2Искусственные спутники Земли – космические летательные аппараты, выведенные на околоземные орбиты.
Они предназначаются для решения различных научных и прикладных задач.
Слайд 3Движение искусственных спутников Земли не описывается законами Кеплера, что обусловливается двумя
причинами:
Земля не является точно шаром с однородным распределением плотности по объёму. Поэтому её поле тяготения не эквивалентно полю тяготения точечной массы, расположенной в геометрическом центре Земли;
Земная атмосфера оказывает тормозящее действие на движение искусственных спутников, вследствие чего их орбита меняет свою форму и размеры и в конечном результате спутники падают на Землю.
Слайд 4Движение искусственных спутников Земли
По отклонению движения спутников от кеплеровского можно вывести
заключение о форме Земли, распределении плотности по её объёму, строении земной атмосферы. Поэтому именно изучение движения искусственных спутников позволило получить наиболее полные данные по этим вопросам. Из-за сопротивления земной атмосферы спутники не могут длительно двигаться на высотах ниже 160 км. Минимальный период обращения на такой высоте по круговой орбите равен примерно 88 мин, то есть приблизительно 1,5 ч. за это время Земля поворачивается на 22,5 градуса. На широте 50 градусов этому углу соответствует расстояние в 1400 км. Следовательно, можно сказать, что спутник, период обращения которого 1,5 часа, на широте 50 градусов будет наблюдаться при каждом последующем обороте примерно на 1400 км западнее, чем на предыдущем.
Слайд 5Посадка космических кораблей
Одной из самых сложных проблем космонавтики является посадка космического
корабля или контейнера с научной аппаратурой на Землю или планету назначения. Методика посадки на различные небесные тела существенно зависит от наличия атмосферы на планете назначения, от физических свойств поверхности и многих других причин. Чем плотнее атмосфера, тем проще погасить космическую скорость корабля и посадить его, ибо планетная атмосфера может быть использована в качестве своего рода воздушного тормоза.
Слайд 6Можно указать три способа посадки космических кораблей жёсткая посадка, грубая посадка,
мягкая посадка. Первый способ – жёсткая посадка, происходящая без гашения скорости корабля. Сохраняя в момент удара с планетой космическую скорость, корабль разрушается. Например, при сближении с Луной скорость корабля составляет 2,3 – 3,3 км/сек. Создание конструкции, которые выдерживали бы ударные напряжения, возникающие при этих скоростях, - задача технически неразрешимая. Такая же картина будет наблюдаться при жёсткой посадке на Меркурий, астероиды и другие небесные тела, лишённые атмосферы.
Слайд 7Полёт космического корабля вблизи планеты назначения, вообще говоря, будет происходить по
гиперболической орбите. Поэтому возможно либо сразу произвести посадку на поверхность планеты, гася гиперболическую скорость, либо предварительно вывести корабль на спутниковую орбиту, выбрать место для посадки и затем осуществлять спуск.
Слайд 8Опасности межпланетного перелёта
Опасность номер один – потоки частиц высоких энергий, проникающих
через массовые преграды. Кроме жестких солнечных излучений в межпланетном полёте следует остерегаться воздействия космических людей и потоков частиц высоких энергий вблизи планет.
В отдалённых областях космического пространства рождаются несущиеся с большими скоростями заряженные частицы, потоки которых именуются космическими лучами. Врываясь в верхнюю атмосферу Земли, они продолжают потоки вторично заряженных частиц. Последние накапливаются в околоземном космическом пространстве. Солнечная активность также является причиной накопления частиц высоких энергий вблизи Земли.
Слайд 9 Запуски первых спутников Земли и космических ракет дали возможность группе
американских учёных под руководством Дж. Ван-Аллена и советским учёным, открыть и изучить потоки частиц высоких энергий в ближнем космосе. В результате этих исследований установлено существование поясов заряженных частиц вблизи Земли.
Слайд 10Существует ряд методов регулирования температуры корабля. Один из них правильный выбор
траектории входа в атмосферу под малым углом к горизонту. При медленном "погружении" корабля в атмосферу потеря скорости происходит медленно, поэтому в меньшей степени происходит и разогрев корабля.