Презентация, доклад на тему Электромагнитное поле

Электромагнитное поле и его распространение в пространствеВ 1864г. Дж. Максвелл создаёт теорию электромагнитного поля, согласно которой электрическое и магнитное поля существуют как взаимосвязанные составляющие единого целого - электромагнитного поля. Электромагнитное поле - это особая форма материи, посредством

Слайд 1Электромагнитное поле

Электромагнитное поле

Слайд 2Электромагнитное поле и его распространение в пространстве
В 1864г. Дж. Максвелл создаёт

теорию электромагнитного поля, согласно которой электрическое и магнитное поля существуют как взаимосвязанные составляющие единого целого - электромагнитного поля.
Электромагнитное поле - это особая форма материи, посредством которой осуществляется взаимодействие между заряженными частицами. Представляет собой взаимосвязан­ные переменные электрическое поле и магнитное поле. Взаимная связь электрического Е и магнитного Н полей заключается в том, что всякое изменение одного из них приводит к появ­лению другого: переменное электрическое поле, порождаемое уско­ренно движущимися зарядами (источником), возбуждает в смежных областях пространства переменное магнитное поле, которое, в свою очередь, возбуждает в прилегающих к нему областях пространства переменное электрическое поле, и т. д. Таким образом, электромагнитное поле распространяется от точки к точке простран­ства в виде электромагнитных волн, бегущих от источника. Благодаря конечности скорости распространения электромагнитное поле может существовать автономно от породившего его источ­ника и не исчезает с устранением источника (например, радио­волны не исчезают с прекращением тока в излучившей их антенне).

Электромагнитное поле и его распространение в пространствеВ 1864г. Дж. Максвелл создаёт теорию электромагнитного поля, согласно которой электрическое

Слайд 3Электромагнитное поле в вакууме описывается напряженностью электри­ческого поля Е и магнитной

индукцией В. Эта теория с единой точки зрения объясняла результаты всех предшествующих исследований в области электродинамики, и, кроме того, из неё вытекало, что любые изменения электромагнитного поля должны порождать электромагнитные волны, распространяющиеся в диэлектрической среде (в том числе, в пустоте) с конечной скоростью, зависящей от диэлектрической и магнитной проницаемости этой среды. Для вакуума теоретическое значение этой скорости, было близко к экспериментальным измерениям скорости света, полученным на тот момент, что позволило Максвеллу высказать предположение (впоследствии подтвердившееся), что свет является одним из проявлений электромагнитных волн.
 
Электромагнитные волны представляют собой электромагнитные колебания, распространяющиеся в пространстве с конеч­ной скоростью, зависящей от свойств среды (рис. 1).

Электромагнитное поле в вакууме описывается напряженностью электри­ческого поля Е и магнитной индукцией В. Эта теория с единой

Слайд 4Электромагнитные волны

Электромагнитные волны

Слайд 5Существо­вание электромагнитных волн предсказано английским физиком М. Фарадеем в 1832 г.

Другой английский ученый, Дж. Максвелл, в 1865 г. теоретически показал, что электромагнитные колебания не остаются локализован­ными в пространстве, а распространяются во все стороны от источника. Теория Максвелла позволила единым образом подойти к описанию радио­волн, оптического излучения, рентгеновского излучения, гамма-излучения. Оказалось, что все эти виды излуче­ния – электромагнитные волны с различной длиной волны λ, т. е. родственны по своей природе. Каждое из них имеет своё определён­ное место в единой шкале электромагнитных волн (рис. 2).

Существо­вание электромагнитных волн предсказано английским физиком М. Фарадеем в 1832 г. Другой английский ученый, Дж. Максвелл, в

Слайд 6Шкала электромагнитных волн

Шкала электромагнитных волн

Слайд 7Распространяясь в средах, электромагнитные волны, как и всякие другие волны, могут

испытывать преломление и отражение на границе раздела сред, дисперсию, поглощение, интерференцию; при распространении в неоднородных средах наблюдаются дифракция волн, рассеяние волн и другие явления.
Электромагнитные волны различных диапазонов длин волн характеризуются различными способами возбуждения и регистрации, по-разному взаимо­действуют с веществом. Процессы излучения и поглощения электромагнитных волн от самых длинных до ИК излучения достаточно полно описываются соотношениями классической электро­динамики

Распространяясь в средах, электромагнитные волны, как и всякие другие волны, могут испытывать преломление и отражение на границе

Слайд 8Открытый колебательный контур
Источником гармонических электромагнитных волн является открытый колебательный контур. Излучение

рассмотренного выше закрытого колебательного контура мало, так как он излучает в окружающее пространство ничтожную часть энергии (рис. 1).
Открытый колебательный контурИсточником гармонических электромагнитных волн является открытый колебательный контур. Излучение рассмотренного выше  закрытого колебательного контура

Слайд 9Это объясняется тем, что этот контур представляет собой почти замкнутую электрическую

цепь. В этой цепи сила тока в данный момент времени одинакова во всех ее участках. Такой контур очень слабо излучает электромагнитные волны. Каждому участку витка катушки контура соответствует близко расположенный участок на противоположном конце диаметра витка, по которому ток проходит в противоположном направлении (рис. 2). На большом расстоянии от витка эти участки создают магнитные поля, индукции которых почти равны по модулю и направлены в противоположные стороны. В результате вдали от контура поля ослабляют друг друга, так что магнитное поле оказывается сосредоточенным лишь внутри катушки.

Это объясняется тем, что этот контур представляет собой почти замкнутую электрическую цепь. В этой цепи сила тока

Слайд 10Так же обстоит дело с электрическими полями зарядов на обкладках конденсатора.

Заряды равны по модулю и противоположны по знаку. Почти все электрическое поле сосредоточено между пластинами, а вдали от них поля зарядов противоположных знаков почти целиком компенсируют друг друга.
Таким образом, большая частота колебаний в колебательном контуре еще не гарантирует интенсивное излучение электромагнитных волн, хотя энергия излучения
Необходимо перейти от закрытого колебательного контура к открытому. Если контур состоит из катушки и двух пластин, не параллельных друг другу (рис. 3), то чем под большим углом развернуты эти пластины, тем более свободно электромагнитные волны излучаются в окружающее пространство.

Так же обстоит дело с электрическими полями зарядов на обкладках конденсатора. Заряды равны по модулю и противоположны

Слайд 12Впервые электромагнитные волны экспериментально получил, передал на расстояние (правда, в пределах

стола) и принял Генрих Герц. В качестве колебательных контуров он использовал так называемые диполи Герца (вибраторы Герца): два стержня с шариками, между которыми оставлен определенный зазор. К шарикам от индукционной катушки подводили достаточно высокое напряжение, и между ними проскакивала искра — высокочастотный разряд (переменный ток). Следовательно, в пространстве возникало быстропеременное электромагнитное поле, распространялась электромагнитная волна, интенсивность которой была наибольшей в направлении, перпендикулярном вектору напряженности .

Впервые электромагнитные волны экспериментально получил, передал на расстояние (правда, в пределах стола) и принял Генрих Герц. В

Слайд 13Введено понятие вибратора Герца, приведена рабочая схема вибратора Герца, рассмотрен переход

от замкнутого контура к электрическому диполю
Посредством вибратора, резонатора и отражательных металлических экранов Герц доказал существование предсказанных Максвеллом электромагнитных волн, распространяющихся в свободном пространстве. Он доказал их тождественность световым волнам (сходство явлений отражения, преломления, интерференции и поляризации) и сумел измерить их длину.
Приемник электромагнитных волн Г. Герц сделал аналогичным образом, только расстояние между шариками было уменьшено. Герц наблюдал электромагнитные колебания в приемном вибраторе по искоркам, проскакивающим между проводниками приемного вибратора.

Введено понятие вибратора Герца, приведена рабочая схема вибратора Герца, рассмотрен переход от замкнутого контура к электрическому диполюПосредством

Слайд 15Г. Герц не только получил электромагнитные волны, но и обнаружил, что

они ведут себя подобно другим видам волн. Он наблюдал отражение электромагнитных волн от металлического листа, установил, что они распространяются прямолинейно в однородной среде, испытывают преломление на границе прозрачных сред, наблюдал интерференцию и на основании экспериментальных данных определил длину электромагнитной волны В опытах Герца λ = 66 см. А при известной частоте можно вычислить скорость распространения электромагнитных волн Он рассчитал, что , т.е. она равна скорости света в вакууме.

Г. Герц не только получил электромагнитные волны, но и обнаружил, что они ведут себя подобно другим видам

Что такое shareslide.ru?

Это сайт презентаций, где можно хранить и обмениваться своими презентациями, докладами, проектами, шаблонами в формате PowerPoint с другими пользователями. Мы помогаем школьникам, студентам, учителям, преподавателям хранить и обмениваться учебными материалами.


Для правообладателей

Яндекс.Метрика

Обратная связь

Email: Нажмите что бы посмотреть